

Atul Limited

Project: Expansion of agro-chemicals (Pesticides/Herbicides) and bulk drug and pharmaceuticals manufacturing unit EC Compliance Report for the period November 2018-April 2019 to EC F. No. J -11011/48/2003-IA II (I) dated 20.02.2004.

).02.2004.		P					
No.	Condition	Comp	liance					
A	Specific Conditions: The gaseous emissions (SO ₂ , NOx, and HCl) and particulate matters from various process units should confirm to the standards prescribed by the concerned authorities from time to time.	proce	olied. aseous emission ss units confirms ls are given in be	to the stan				
		No.	nary of Process S Parameter	Standard values as	s: Unit	Apr19		od Nov18 –
				per CCA		Min.	Max.	Avg.
		1	SO ₂	40	mg/Nm ³	3.8	17.8	8.97
		2	SO ₂ (kg/T)	2	kg/T	0.5	1.7	0.977
		3	NOx	25	mg/Nm³	10.5	13.5	10.98
		4	HCI	20	mg/Nm ³	4.1	9.9	6.11
		5	PM	150	mg/Nm³	8.5	85	45.18
		6	PM with Pesticide compound	20	mg/Nm ³	4.2	9.5	7.0
		Sumn No.	nary of Flue Stac	k results: Standard values as per CCA	Unit	Values Apr19 Min.	for the peri	od Nov18 – Avg.
		1	PM	100	mg/Nm³	50	80	61.83
		2	PM (New Boiler)	50	mg/Nm ³	35	49	41.5
		3	SO ₂	600	mg/Nm ³	75	128	96.41
		4	NOx	600	mg/Nm ³	105	145	120.09
		5	NOx (NewBoiler)	300	mg/Nm ³	71	95	79.67
		(Pl. se	ls of stack results ee pg. no. 11)	for the con	npliance per	iod is giv	en in Tab	le 1.
	At no time, the emission levels should go beyond the stipulated standards.	Complied. Monthly monitoring is being done by GPCB approved, NABL approved of At no time, the emissions exceeded the prescribed limits during report p						
In the event of failure of pollution control system(s) adopted by the unit,		Comp	nary of stack resi lied. ch case happene				o. i as abo	ve.

ii Ambient air quality monitoring Station should be set up in down wind direction as well as where max. ground level concentration of SPM anticipated in consultation with the state pollution control board.

Complied.

10 Ambient air quality monitoring Station have been set up in down wind direction as well as where max. ground level concentration of SPM anticipated in consultation with GPCB. The same had been shown to authority like SPCB, CPCB & MoEF during their visit to our factory.

List of our ambient air monitoring station is given below:

No.	Location
1	66 KVA GEB substation
2	Opposite Shed D
3	Near ETP (West Site)
4	ETP Plat (North site)
5	Near TSDF
6	Near Main Guest House
7	At Wyeth Colony
8	Gram panchayat hall
9	Near Main office, North site
10	Water tank at Haria Road

Fugitive emission in work zone environment, product, raw material storage areas must be regularly monitored.

iii

Complied.

Fugitive emissions in the work zone environment and raw material storage area is being regularly monitored by NABL approved third party.

The maximum values during the compliance period confirms that at no time the emission level went beyond the stipulated standards. Parameter wise summery is given below:

Plant	Area	Parameter	Prescribed Limit	Values of VOCs in Milligram per NM³ for the period Nov18 —Apr19				
				Min.	Max.	Avg.		
2,4 D	Reactor	Phenol	19	9.2	14.1	12.0		
	Buffer tank	Chlorine	3	0.8	2.1	1.3		
Resorcinol	Benzene storage tank area near vent	Benzene	15	5.4	14.0	9.4		
	Near Extraction/scr ubber unit	Butyl acetate	-	1.6	10.8	5.9		
Pharma	At second floor work area	Ammonia	18	9.9	14.6	11.7		
	Ammonia recovery area	Ammonia	18	3.1	12.2	7.4		
Epoxy - I	At vacuum pump 2nd floor	ECH	10	2.6	5.4	3.6		
	At vessel POS 1208 G.F	ECH	10	3.1	6.2	5.0		
Shed H	At second floor work area	Nitrobenzene	5	1.3	4.4	2.8		
Shed J	Buffer Tank	Chlorine	3	1.1	2.6	1.9		

	Results for the compliance period is given in Table 2 . (Pl. see pg. no. 15)
The company should install alkali scrubbers for scrubbing of HCl.	Complied. Alkali scrubbers for scrubbing of HCl have been installed. In fact we have installed dual scrubbing system i.e. combination of caustic and water scrubber system for scrubbing of HCl in majority of plants like 2,4 D plant, Shed C, Shed F, Shed H etc.
pH of the scrubber tank should be monitored regularly.	Complied. pH of the scrubber tank is monitored regularly and logged. It is a regular operating practice.
Liquid effluent generated from the scrubber should be sent to effluent treatment plant.	Complied. Liquid effluent generated from the scrubber is being sent to ETP along with plant effluent stream.
All the process equipment/reaction vessels should be connected with central exhaust system.	Central exhaust system has been provided at strategic locations and the critical operations evolving the hazardous gases are routed through multiple stage scrubbing system.
Further measures should be taken to reduce the losses of solvents.	Complied. Reactors are connected to chilled brine condenser system. Breather valves have been provided to all solvent storage tanks.
Cooling arrangement should be made for all the solvent storage tanks to minimize evaporation losses.	Complied. Our Most of solvent storage tanks are underground. All the storage tanks are in close loop which is connected to condenser to minimize evaporation losses.
The company should monitor VOCs from the incinerator and data submitted regularly to SPCB and Ministry of Environment and forests.	Complied. Incinerator stack has been regularly monitored and data submitted regularly to GPCB and MoEF through six monthly EC compliance report. Details of stack results for the compliance period is given in Table 1. (Pl. see pg. no. 11)

iv	The effluent generation should not exceed 1191 m3/day (936 m3/d of	Complied.			th a 4 F.C. a 44		0000 for a		
	process effluent and 255 m3/d of	However, since we have another EC granted in 2009 for expansion, we request to consider latest figures given in same.							
	domestic effluent).						1 4 4 0 4 4	/OF /2000	
		13.05.2009, li	ndustrial	Waste	water ger	eration s	hall not ex	xceed 17,	
		Detail break u				or the re	port perio	a is 8631	6 m³/day only.
		Wastewater generation m³/day		Dec-18		Feb-19	Mar-19	Apr-19	Total
		Month wise	256660	25181	9 243284	238044	300815	272559	1563181
		Per day	8555	8123	7848	8502	9704	9085	Avg. 8636
		below:			Stipulated	·	s for the pe		nmary is given 8 –Apr 19
					value	Min.	Max	к. А	vg.
		Wastewater g	generation	m³/d	17283	7848	970)4 80	636
	The effluent should be segregated at source of generation.	Complied. Concentrated recovery proc		icals are l	are being retrieved through				
	The Concentrated effluent stream	Complied.							
	should be incinerated and non-								
	concentrated effluent after tertiary								concentrated.
	treatment should be discharged into the CETP.		sold. Afte	er recov	ery of prod	duct, lean	effluent is	s sent to l	nd product so ETP where it is
<u> </u>		a catea witho	at diriy di	incuity.	1 ICTICC IIO	ii icii ici ut	10,1131040	an cu.	

The treated effluent should be discharged into estuary zone of river Par through 4.0 km long HDPE pipe line only after it meets the standards stipulated by the Gujarat Pollution Control Board/EPA rules.

Complied.

The discharged effluent is meeting all state pollution control board limits and values of various parameters of treated effluent is given in **Table 3**. (Pl. see pg. no. 15) Apart from the same, we have carried out EIA study of river Par in 2009 & 2015.

The maximum values during the compliance period confirms that at no time the emission went beyond the stipulated standards. Summary is given below:

Sr. No.	Parameter	Norms		for the pe –Apr19	eriod
			Min.	Max.	Avg.
1	рН	5.5-9.0	7.08	7.95	7.44
2	Temperature	40 deg C	30.1	32.6	31.05
3	Colour (pt. co. scale)in units		40	130	65.00
4	Suspended solids	100 mg/l	23	86	52.00
5	Phenolic Compounds	5 mg/l	0.28	0.75	0.48
6	Cyanides	0.2 mg/l	ND	ND	ND
7	Fluorides	2 mg/l	0.32	1.2	0.60
8	Sulphides	2 mg/l	0.4	1.8	1.33
9	Ammonical Nitrogen	50 mg/l	32	48	39.67
10	Total Chromium	2 mg/l	ND	ND	ND
11	Hexavalent Chromium	1 mg/l	ND	ND	ND
12	BOD (3 days at 27°C)	100 mg/l	44	70	61.50
13	COD	250 mg/l	202	232	216.67

The domestic waste water should be disposed off through septic tank / soak pit system.

Complied.

Domestic waste water goes to septic tank and subsequently in to ETP for further treatment.

Detail of Domestic effluent generation is given in below table:

Domestic Wastewater generation m³	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	Total
Month wise	11100	10832	10493	10283	12276	11856	66840
Per day	370	349	338	367	396	395	Avg. 369

The maximum, minimum and average values are given below:

Domestic Wastewater generation	Values for the period Nov-18 –Apr 19		
	Min.	Max.	Avg.
Domestic Wastewater generation m³/d	338	396	369

The Company should also Set up a separate online fish pond using treated effluent, to ensure that the quality of treated effluent discharged into the par estuary does not have any adverse impact on the aquatic life.

٧

Complied.

We have set up a separate online fish pond using treated effluent at our ETP.

	The effluent quality at the discharge point must also be monitored periodically by an independent agency authorized by CPCB and report of the independent agency should be submitted to the Ministry's Regional office at Bhopal/CPCB/GPCB	GPCB all monitorin The river Agencies Enviro Te 2009 & 2	ent quality at the ETP discha ental auditors appointed by so monitor the treated eff g results of GPCB is attached water quality at the discharge like Pollucon Laboratories chnologies Pvt. Ltd- NABET	Fluent quality at regular intervals. Red as Annexure A. e point is regularly being monitored by GP Pvt. Ltd- MoEF approved agency, Envis accredited have also done the monitorin ktracts from latest reports were submitted	cent PCB. sion
vi	As reflected in the EIA/EMP report, the solid waste and ETP sludge should be incinerated and incinerator ash should be disposed off in the landfill facility within the plant premises. The ground water quality in and around the unit and the hazardous waste storage site should be regularly monitored and the data recorded to ensure that there is no contamination of the groundwater.	taken per GPCB thr per GPCE Complied	te is disposed into our TSDA mission from MoEF vide lette ough our CCA. We also send approval given through our vater quality is being checked s waste storage site. Latest	Finstead of incineration for which we har dated 6.5.04 and same is also approved our incinerable waste for co-processing CCA. If regularly for in and around the unit and Groundwater analysis report is attached	d by g as the
vii	The destructive efficiency of the incinerator should be assessed by an agency like CPCB and a report submitted to the Ministry.	agency ir	ructive efficiency of the incine	erator was assessed by M/s. SGS, a repunitoring. Report already submitted vide .17.	
viii	The company should comply with the provisions of coastal Regulation Zone Notification of 1991 and Coastal Zone Management Plan of Gujarat. Further, specific conditions stipulated by the Forest and Environment Department, Government of Gujarat vide its letter No. ENV-1097-2942-P dated 27th January, 1998 for laying of pipe line for discharge of treated effluents through the estuary zone of the River Par Zone should be strictly adhered to.			submitted to the Ministry vide our letter .17.	our
ix	Occupational Health Surveillance of the workers should be done on a regular basis and records maintained as per the Factories Act.		onal health surveillance of the	e workers is being done on regular basis act which is shown in below table: Total No. of Employees 571 579	and
х	The company should develop rainwater harvesting structures to the harvest the run off water from the rooftops and by laying a separate	Complied Company	has expanded its harvesting	g pond capacity to 9000 KL capacity pon cility/ capacity to cater our consumption v	

xi	storm water drains system for recharge of ground water and to reduce the drawl from the river Par. The project authorities may undertake a survey to assess the impact of gaseous emissions/pollutants on the health including respiratory and digestive system of the population within and vicinity of the plant and report submitted to the State Government and to this Ministry within six months.	rain harvested water with zero river drawls of water during the rainy days. Besides this, there are three check dams and pumping facility to harvest rain water. We are also constructing temporary sand bag dam on top of dam towards the end of monsoon to store additional free flowing rain water in river Par. Complied. The survey was carried out to assess the impact of emission/pollutants on the health including respiratory & digestive systems of population within & vicinity of the plant. So far no major illness have been identified. Report submitted vide our letter ref. Atul/MoEF/Reg/4 dated 16.8.04.
xii	The Company should developed a green belt in an 25% of the plant area as per the CPCB guidelines.	Complied. Company has developed green belt and dense plantation inside the factory in area more than 33 % of total land. Company is having green belt development plan and planting more than about 50000 plants per year on regular basis.
xiii	As per the policy decision taken vide this Ministry's circular no. J-21011/8/98- IA II (I) dated 14th May 2002 and 23rd June, 2003, the company shall earmark a separate fund i.e. 1% of the total cost of the project (Rs. 25 Crores) for ecodevelopment measures including community welfare measures in the project area.	Complied. We had submitted the Eco fund earmarked for eco development to GPCB with an intimation to MoEF vide our letter NRK/ECC/GPCB/3 dated 17.05.2004. Action plan related to Eco-fund also made as per process and communicated to authority wide our letter Atul/ECC/GPCB/ECO-fund/2 dated 2.11.2004. Copy of same again submitted to Ministry vide our letter Atul/SHE/MoEF/Visit/3 dated 4.4.17.
	The amount shall be deposited within three months in a separate account to be maintained by GPCB.	Complied. We had submitted the Eco fund earmarked for eco development to GPCB with an intimation to MoEF vide our letter NRK/ECC/GPCB/3 dated 17.05.2004.
	The plans in this regard should be submitted to the SPCB as well as to the Ministry within three months of issue of this letter.	Complied. Action plan related to Eco-fund also made as per process and communicated to authority vide our letter Atul/ECC/GPCB/ECO-fund/2 dated 2.11.2004.
	After approval of the action plan by GPCB, the amount deposited will be released to the project authorities in two installments based on the progress of implementation.	Complied.
B.	General Conditions	
i	The project authorities must strictly adhere to stipulations made by GPCB.	Complied. The company adheres to the compliances and has not exceeded the stipulation. This has been certified by our Environmental auditors, an authorized agency and nominated by GPCB; through Environmental audit every year. Latest compliance report by GPCB appointed Environmental auditor Faculty of Pacific school of Engineering, Dist. Surat for year 18-19 is attached as Annexure C.

ii	At no time, the emissions should not go beyond standards.	Comp	lied.								
	go boyona stantaulas.		lly monitoring is being done by time, the emissions exceeded				t period.				
			The maximum values during the compliance period confirms that at no time the emission level went beyond the stipulated standards.								
	In the event of failure of any pollution		Summary of stack results given in specific condition no. i as above. Complied.								
	control system adopted by the units,										
	the respective unit should be	No su	ch incident happened during o	compliance perio	od.						
	immediately put out of operation and should not be restarted until the										
	desired efficiency has been achieved.										
iii	The overall noise level in and around	Comp	lied.								
	the plant area shall be kept well										
	within the standard by providing noise control measures including		tic hood, silencer and acous priate high noise area like turk			ation are	e provid	ed at			
	acoustic hoods silencers, enclosures	иррго	priate riigii rioise area like tark	Jilie, Du set, vei	its etc.						
	etc. on all source of noise generation.										
	The ambient noise levels should	Comp	lied.								
	confirm to the standards prescribed under EPA Rules, 1989, viz. 75	The ar	mhient noise level is regularly	monitored and i	ts data ai	re aiven i	n Table .	4 and			
	(daytime) and 70bBA(night time)	75 The ambient noise level is regularly monitored and its data are given in Table 4 and 5. (Pl. see pq. no. 16,)									
			naximum values during the co								
			emission level went beyond	the stipulated	standar	ds. Sumr	mary is	given			
		below Noise	: level monitoring data (Day Ti	me)							
		Sr. No.	Location	Permissible Limits, dBA	Values Nov18-	for the pe Apr19	riod				
				75	Min.	Max.	Avg.	1			
		1	Near Main guest house	75	63.6	68.9	65.3				
		2	Near TSDF	75	63.2	66.2	64.1				
		3	At Wyeth Colony	75	60.4	66.8	64.1				
		4	Gram Panchayat Hall	75	61.3	69.5	63.8				
		5	Near Main Office North site	75	65.5	67.9	66.7				
		6	ETP North site	75	66.5	70.2	68.0				
		7	Opposite shed D	75	64.7	68.9	66.3				
		8	ETP West site	75	65.4	68.7	67.2				
		9	Water tank Haria road	75	62.5	64.9	63.7				
		10	Near 66KVA substation	75	64.3	67.8	65.9				
			level monitoring data (Night 7		1,,,			7			
		Sr. No.	Location	Permissible Limits, dBA	Nov18-						
1		1 1		70	Min.	Max.	Avg.	1			
		1	Near Main guest house	70	53.1	56.1	55.0				
		2	Near TSDF	70	56.4	56.1 60.3	_				
							55.0	-			

	1				T = 2		_		1
		5	Near Main (Office North site	70	55.7	58.9	57.3	
		6	ETP North s		70	52.2	55.1	53.6	
		7	Opposite sh	ied D	70	53.8	55.9	54.8	
		8	ETP West s	ite	70	54.7	56.3	55.6	
		9	Water tank	Haria road	70	53.4	55.8	54.7	
		10	Near 66KV	A substation	70	51.7	56.2	53.9	
iv	The project authorities will provide adequate funds to recurring and non-recurring to implement the conditions	Compl EMP m		e implemented by	v 2010 and mar	ny things	: have alr	ready he	en at
	stipulated by the Ministry of Environment and Forest as well as the State Government along with the implementation schedule for all the conditions stipulated herein. The funds so provided shall not be diverted for any other purposes.	Non re Recurr fund is report Exper	ccurring cost ing cost: A s allocated to period is given aditure for		red for every con	ming six nent. To	months	and sep	parate
		month	าร				<u> </u>	13.	
				Fuel Chemicals(Raw N	(aterial)		489262 94312779)	
			.8–Apr 19	Electricity	naterial)		23083536		
		1 1	ing, recurring enance,	Waste disposal			0301875		
			ications and	-			3430602		
			onitoring.	Maintenance & m	odifications	2	7370856		
				Monitoring		1	966640		
				Total		2	82955550)	
V	The project authorities must strictly comply with the rules and regulations with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Wastes (Management & Handling) Rules, 2003.	dispos (Mana curren waste certifie GPCB; Latest Pacific	mpany com al of hazo gement & F t CCA No. Stipulation d by our Er through En compliance school of E	plies with the rule rdous wastes in Handling) Rules, 2 AWH-67717 for made in CCA be evironmental audit report by GPCE ngineering, Dist. S	n accordance of 2003. We have handling, stora by GPCB are be itors, an authoritevery year. B appointed Engles	with the valid a ge and or valid a com zed age vironmer	e Hazarduthorizat disposal aplied. T ncy and i	dous Wion und of haza his has nominat	lastes er our ardous been ted by
	Authorization from the GPCB must be obtained for collections /treatment/ storage/ disposal of hazardous waste.	nt/							
vi	The stipulated conditions will be monitored by the Regional office of this Ministry at Bhopal/ GPCB.	Noted.							
	A six monthly compliance report and the monitored data should be submitted to them regularly.		nthly comp	iance report and with copy marke			being sul	omitted	to the

Vii	The Project Proponent shall inform	Complied.
	the public that the project has been	We before all the collisions also also designed as the condition of the conditions o
	accorded environmental clearance by the Ministry and copies of the	We informed the public through advertisement and by sending our EC to local Panchayat, Zila parishad, District Industrial Centre for further actions at their end.
	clearance letter are available with the	Functionagut, Zila paristida, District industrial Centre for further actions at their end.
	SPCB/Committee and may also be	
	seen at website of the Ministry of	
	Environment and Forest at	
	http://www.envfor.ni.in.	
	This shall be advertised within seven	Complied.
	days from the date of issue of the	
	clearance letter at least in two local	Advertisement was published as directed and copy of the same was submitted to
	newspaper that are widely circulated	Ministry.
	in the region of which one shall be in	
	the vernacular language of the	
	locality concerned and a copy of the same shall be forwarded to the	
	concerned Ministry's Regional office	
	at Bhopal.	
3.0	The ministry or any competent	Noted.
	authority may stipulate any further	
	condition(s) on receiving reports from	
	the project authorities.	
	The above conditions will be	
	monitored by the Regional Office of	Noted.
4.0	this Ministry located at Bhopal.	
4.0	The Ministry may revoke or suspend the clearance if implementation of	Noted.
	any of the above conditions is not	
	satisfactory.	
5.0	Any other conditions or alternation in	Noted and will be complied.
	the above conditions will have to be	'
	implemented by the project	
	authorities in a time bound manner.	
6.0	The above conditions will be	Noted.
	enforced, inter-alia under the	
	provisions of the Water (Prevention	
	and Control of Pollution) Act, 1974	
	the Air ((Prevention and Control of	
	Pollution) Act, 1981 the Environment (Protection) Act, 1986, Hazardous	
	Wastes (Management and Handling)	
	Amendment Rules, 2003 and the	
	Public Liability Insurance Act, 1991	
	along with their amendments and	
	rules.	
	1	

Detail	s of Process and Flue stack							1		1		1			
Sr. No.	Stack Details	Paramenter	Permissible	Date of	Obtained	Date of	Obtained Value	Date of	Obtained	Date of	Obtained	Date of	Obtained	Date of	Obtained
			Limits	Sampling	Value	Sampling		Sampling	Value	Sampling	Value	Sampling	Value	Sampling	Value
Atul E	ast Site														
1	Phosgene Plant (Old Plant)	Phosgene	0.1 ppm	-	Not in use	-	Not in use								
Caust	ic Chlorine Plant														
2	Dechlorination Plant	CI ₂	9.0 mg/Nm3	1.11.18	2.7	27.12.18	2.5	19.1.19	2.6	21.2.19	2.8	28.3.19	2.7	5.4.19	3.2
		HCI	20.0 mg/Nm3	1	4.9		4.5	1	4.1	1	4.3		4.1		4.8
3	Common stack of HCI Sigri unit	Cl ₂	9.0 mg/Nm3	1.11.18	5.4	27.12.18	5.7	19.1.19	5.8	21.2.19	6.2	28.3.19	5.5	5.4.19	6.5
	1&2	HCI	20.0 mg/Nm3	1	5.6	1	5.1	1	5.5		5.6	1	6.1	1	6.8
FCB P	aint	1													
4	Foul Gas Scubber	SO ₂	40.0 mg/Nm3		Not in use		Not in use	1	Not in use		Not in use	1	Not in use	1	Not in use
		NOx	25.0 mg/Nm3												
Sulfur	ic Acid (East Site)	110%	20.0 1119/11110												
5	Sulfuric Acid Plant	SO ₂	2.0 kg/T	1.11.18	0.5	21.12.18	0.6	24.1.19	0.8	annual		Not		19.4.19	0.9
	Sulfulic Acid Fluit	Acid Mist	50.0 mg/Nm3	1.11.10	5.9	21.12.10	5.7	24.1.13	5.4	shutdown		Runnig		13.4.13	6.3
		Acid Wist	50.0 Hig/Mili5		5.5		5.7		5.4			During			0.5
												Visit			
6	ChloroSulfonic Acid plant reactor	CI ₂	9.0 mg/Nm3	2.11.18	4.4	21.12.18	4.3	24.1.19	4.1	annual		Not			Not Runnig
		HCI	20.0 mg/Nm3	1	5.6	1	5.7	1	5.6	shutdown		Runnig			During Visit
												During			
Incine	rator			1				1				Visit			
7	Incinerator	PM	150.0 mg/Nm3	17.11.18	56	15.12.18	48	24.1.19	45	7.2.19	53	9.3.19	60	4.4.19	80
ľ	incinerator	SO ₂		17.11.10	17.4	15.12.10	14.6	24.1.13	14.1	7.2.13	15.2	3.3.13	16.4	4.4.13	17.8
		NOx	40.0 mg/Nm3 25.0 mg/Nm3	-	11.2	4	11.4	4	10.5	-	10.8	-	12.3	4	13.5
NII DI -		INUX	25.0 mg/mm3	1	11.2		11.4	1	10.5		10.6		12.3	<u> </u>	13.5
NI Pla 8	Foul Gas Scubber	SO ₂	10.0 112		Not Describe	1	No. Barrie		Mat Daniela		Not Describe	1	Not Describe	<u> </u>	No. Dec. 1
8	Foul Gds Scubber		40.0 mg/Nm3	4	Not Runnig During Visit		Not Runnig During Visit								
		NOx	25.0 mg/Nm3		Dulling Visit		During visit		During visit		During visit		Duning visit		During visit
NBD F	Plant .														
9	Spray Dryer	PM	150.0 mg/Nm3		Not in use		Not in use								
2-4-D	Plant														
10	Common Scrubber; 2,4D Plant	CI ₂	9.0 mg/Nm3	4.11.18	4.8	15.12.18	5.1	18.1.19	5.3	21.2.19	6.2	8.3.19	6.7	18.4.19	7.3
		HCI	20.0 mg/Nm3		6.9		6.7		6.8		7.1		7.8		8.1
		Phenol		1	ND	1	ND	1	ND	1	ND		ND		ND
11	Dryer-1	PM with	20.0 mg/Nm3	4.11.18	4.4	15.12.18	4.6	18.1.19	4.2	21.2.19	5.3	8.3.19	5.9	18.4.19	7.2
		Pesticide													
		compound						1							
12	Dryer-2	PM with	20.0 mg/Nm3		6.9		6.4		6.1		7.2		7.6		7.9
		Pesticide													
13	Dryer-3	compound PM with	20.0 mg/Nm3		7.6		7.9	1	7.8		8.5		8.9		9.5
-0	5,76, 5	Pesticide	20.0 1119/141113	1	, .5			1	1		0.0		5.5		0.0
		compound		1				1							
14	Dryer-4	PM with	20.0 mg/Nm3	1	6.5	1	6.8	1	6.5		7.8	1	8.5		8.1
		Pesticide		1				1							
		compound												Page 11 o	

Page 11 of 16

Sr. No.	Stack Details	Paramenter	Permissible	Date of	Obtained	Date of	Obtained Value	Date of	Obtained	Date of	Obtained	Date of	Obtained	Date of	Obtained
			Limits	Sampling	Value	Sampling		Sampling	Value	Sampling	Value	Sampling	Value	Sampling	Value
CP Plo	nt	•													
15	MCPA	CI ₂	9 mg/NM ³		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig
		HCI	20 mg/NM ³		During Visit		During Visit		During Visit		During Visit		During Visit		During Visit
		SO ₂	40 mg/NM ³												
16	Fipronil	SO ₂	40 mg/NM ³		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig
-	i ipromi	HCI	20 mg/Nm3		During Visit		During Visit		During Visit		During Visit		During Visit		During Visit
					-				-		_		_		
17	Imidacloprid	NH ₃	175 mg/Nm3		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig
	· ·	_			During Visit		During Visit		During Visit		During Visit		During Visit		During Visit
		00	40. 0. 0												
18	Pyrathroids	SO ₂	40 mg/Nm3		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit
		HCI	20 mg/Nm3		Duning visit		During visit		During visit		During visit		Duning visit		Dulling Visit
	0		475 21 0	51110		101010		0.4.40	5.0	7040	0.0	0040	0.5		7.0
19 MPSL	Stack at Amine Plant	NH ₃	175 mg/Nm3	5.11.18	5.8	13.12.18	5.5	3.1.19	5.8	7.2.19	6.2	8.3.19	6.5	4.4.19	7.9
20	Phosgene Scrubbr at MPSL	Phosgene	0.1 ppm	5.11.18	ND	28.12.18	ND	11.1.19	ND	8.2.19	ND	28.3.19	ND	12.4.19	ND
21	Central Scrubber at MPSL	Phosgene	0.1 ppm	5.11.18	ND	28.12.18	ND	11.1.19	ND	8.2.19	ND	28.3.19	ND	12.4.19	ND
NICO	plant	_													
22	Central scrubber at Nico Plant	Acetonytryle,		-	Not Runnig	-	Not Runnig	-	Not Runnig	-	Not Runnig	-	Not Runnig	-	Not Runnig
		IPA			During Visit		During Visit		During Visit		During Visit		During Visit		During Visit
Ester F															
23	Scrubber at Ester plant for	Formaldehyde	10 mg/Nm3		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig
24	Glyphosate Central Scrubber MCPA Plant	HCI	20 mg/Nm3		During Visit Not Runnig		During Visit Not Runnig		During Visit Not Runnig		During Visit Not Runnig		During Visit Not Runnig	-	During Visit Not Runnig
Z#	Central Scrubber MCFA Fiant	nci	20 mg/mms		During Visit		During Visit		During Visit		During Visit		During Visit		During Visit
25	MPP plant scrubber	HCI	20 mg/Nm3		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig
		Phosgene	0.1 ppm		During Visit		During Visit		During Visit		During Visit		During Visit		During Visit
Atul W	est Site														
26	Shed A05/03/44	CI ₂	9 mg/NM ³	23.11.18	3.2	6.12.18	3.1	4.1.19	3.2	1.2.19	3.5	1.3.19	3.8	3.4.19	4.2
		HCI	20 mg/NM ³		5.5		5.9		5.6		6.1	1	6.5	1	7.1
27	Shed B2/12/24 Reaction Vessel	CI ₂	9.0 mg/Nm3	16.11.18	5.4	6.12.18	5.2	3.1.19	5.4	2.2.19	5.8	2.3.19	6.1	4.4.19	6.8
		HCI	20.0 mg/Nm3		4.5		4.8		4.9		5.2		5.3	1	5.8
28	Shed B18/02/24 Fan	SO ₂	40 mg/NM ³	16.11.18	3.9	6.12.18	3.8	3.1.19	3.9	2.2.19	4.3	2.3.19	4.6	4.4.19	5.2
		CI ₂	9 mg/NM ³		4.8		4.5		4.6		4.5		4.3		4.6
		HCI	20 mg/NM ³		5.6		5.5		5.3		5.1		5.3		5.1
29	Shed C5/20/15 Chlorinator	CI ₂	9.0 mg/Nm3	17.11.18	5.6	6.12.18	5.7	3.1.19	5.8	2.2.19	6.1	1.3.19	6.2	5.4.19	6.4
		HCI	20.0 mg/Nm3		7.4		7.5		7.2		6.8		7.1		7
30	Shed D Niro Spray dryer No. 45	РМ	150.0 mg/Nm3	22.11.18	8.6	13.12.18	8.5	10.1.19	8.6	not running during visit	8.6	2.3.19	60	11.4.19	75
				1		1				1					
31	Shed D Niro Spray dryer No.50	PM	150.0 mg/Nm3	1	13.5	1	13.8	1	13.1	7040	13.1	7040	55		58
32	Shed E 7/12/49 Spray Dryer	PM	150.0 mg/Nm3		not running during visit		not running during visit		not running during visit	7.2.19	12.4	7.3.19	12.8	4.4.19	13.2
33	Shed F F6/1/15 Reaction Vessel	Cl ₂	9.0 mg/Nm3	17.11.18	4.8	6.12.18	4.9	3.1.19	4.8	2.2.19	5.2	1.3.19	5.8	4.4.19	6.3
		HCI	20.0 mg/Nm3		5.4		5.6		5.8		5.9		6.2		6.7
34	Shed G 10/8/1 (receiver)	Cl ₂	9.0 mg/Nm3		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig
		HCI	20.0 mg/Nm3	1	During Visit		During Visit		During Visit		During Visit		During Visit		During Visit
35	Shed H 11/6/17 chlorinator	Cl ₂	9.0 mg/Nm3	22.11.18	4.2	14.12.18	4.5	11.1.19	5.1	7.2.19	5.7	7.3.19	6.1	11.4.19	6.5
1		HCI	20.0 mg/Nm3	1	6.4	1	6.6	1	6.5	1	6.1	1	6.3	1	6.8
36	Shed K K-13/3/4 Final of Sulfuric	SO ₂	2.0 kg/T	17.11.18	0.9	13.12.18	0.8		Not Runnig	7.2.19	1.2	7.3.19	1.4	11.4.19	1.7
	acid plant	Acid Mist	50.0 mg/Nm3	1	11.8	1	11.4	1	During Visit		10.5		10.8	1	13.5
37	Shed J15/09/25	HBr		17.11.18		13.12.18	ND	10.1.19	ND	6.2.19	ND	7.3.19	ND	11.4.19	ND
		SO ₂	40 mg/NM ³	1	6.5	ĺ	6.8	1	6.4	1	6.9	1	7.3	1	8.9
Ь	l	1 2	g	I	1	L	L	L		L				Page 12 of	

Sr. No.	Stack Details	Paramenter	Permissible	Date of	Obtained	Date of	Obtained Value	Date of	Obtained						
			Limits	Sampling	Value	Sampling		Sampling	Value	Sampling	Value	Sampling	Value	Sampling	Value
38	Shed J12/01/42	SO ₂	40 mg/NM ³		Not Runnig	13.12.18	6.3	10.1.19	4.9	6.2.19	5.8	7.3.19	6.1	11.4.19	7.5
		CI ₂	9.0 mg/Nm3	1	During Visit		4.5		4.6		5.6		6.2		7.2
		HCI	20.0 mg/Nm3				4.1		4.1		4.8		5.2		6.3
39	Shed J12/03/36	SO ₂	40 mg/NM ³	17.11.18	9.5	13.12.18	9.8	10.1.19	9.1	6.2.19	8.2	7.3.19	8.7	11.4.19	9.1
		HCI	20.0 mg/Nm3		4.5	1	4.9	1	4.8		5.3		5.9		6.5
40	Shed N Scrubber Fan N20/08/24	Cl ₂	9 mg/NM ³	17.11.18	5.5	13.12.18	5.8	10.1.19	5.7	7.2.19	5.4	9.3.19	5.9	11.4.19	6.3
		HCI	20 mg/NM ³		9.3	_	9.7		9.9		8.9		9.3		9.8
41	Shed N Scrubber Fan N20/02/41	SO ₂	40 mg/NM ³	17.11.18	7.6	13.12.18	7.2	10.1.19	7.3	7.2.19	7.5	9.3.19	7.8	12.4.19	8.3
42	Sulfer Black Plant	H ₂ S		29.11.18	ND	14.12.18	ND	4.1.19	ND	22.2.19	ND	7.3.19	ND	19.4.19	ND
		NH ₃	175 mg/NM ³		14.4		14.8		14.4		15.3		16.8		18.2
43	Sulfer Dyes plant	H₂S		29.11.18	ND	14.12.18	ND	4.1.19	ND	22.2.19	ND	7.3.19	ND	19.4.19	ND
		NH ₃	175 mg/NM ³		15.8		15.9		15.7		16.8		15.9		16.5
Atul N	orth Site														
44	N-FDH Plant Catalytic Incinerator	PM	150.0 mg/Nm3	21.11.18	45	19.121.18	48	9.1.19	49	15.2.19	52	14.3.19	55	12.4.19	60
		SO ₂	40.0 mg/Nm3		11.2		11.7		11.2		11.8		12.5		13.5
		NOx	25.0 mg/Nm3		9.9		9.4		9.1		10.6		11.2		11.8
		Formaldehyde	10.0 mg/Nm3		N.D		N.D		N.D		N.D		N.D		ND
45	PHIN Plant vessel	Phosgene	0.1 ppm	22.11.18	ND	15.12.18	ND	9.1.19	ND	14.2.19	ND	14.3.19	ND	10.4.19	ND
46	DCDPS Plant	SO ₃		22.11.18	ND	20.12.18	ND	17.1.19	ND	14.2.19	ND	14.3.19	ND	10.4.19	ND
47	DDS Plant	NH ₃	175 Mg/Nm3	22.11.18	13.8	20.12.18	13.6	17.1.19	12.8	14.2.19	13.2	14.3.19	14.3	10.4.19	15.8
48	SPIC II Plant	SO ₃		22.11.18	ND	19.12.18	ND	17.1.19	ND	14.2.19	ND	14.3.19	ND	13.4.19	ND
49	SPIC I Plant	NH ₃	175 mg/Nm3	22.11.185	12.4	20.12.18	12.2	17.1.19	12.5	15.2.19	13.2	14.3.19	14.6	13.4.19	15.8
50	SPIC IV Plant	NH ₃	175 mg/NM ³	23.11.18	14.9	20.12.18	15.2	17.1.19	14.9	15.2.19	14.3	14.3.19	15.3	10.4.19	16.5
		SO₃		1	5.3	1	5.4	1	5.8	1	6.2	1	7.5		8.5
51	Furnace (Phosgene plant-New)	PM	150 mg/NM ³	30.11.18	56	28.12.18	59	25.1.19	62	22.2.19	65	28.3.19	70	25.4.19	85
52	Reactor (Phosgene plant- New)	со		30.11.18	ND	28.12.18	ND	25.1.19	ND	22.2.19	ND	28.3.19	ND	25.4.19	ND
		Phosgene	0.1 ppm		ND		ND		ND		ND		ND		ND

Page 13 of 16

C. N.	Charle Date Te	D	D	D.11.16	Obtober	Date of	Objective division	Date of	Observed	D.t. of	Obtained	Data	Objectived	Dataset	Observed
Sr. No.	Stack Details	Paramenter	Permissible Limits	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value
			Litties	Sumpling	Value	Sumpling		Sumpling	value	Sumpling	Value	Sumpling	Value	Sumpling	Value
East s	te	•	•												•
1	FBC boiler El	PM	100 mg/Nm3	28.11.18	50	14.12.18	52	19.1.19	55	6.2.19	58	13.3.19	62	18.4.19	75
		SO ₂	600 mg/Nm3	1	98	1	95		96		99		95		98
		NOx	600 mg/Nm3	1	110	1	115		118		121		115		120
2	FBC boiler E2	PM	100 mg/Nm3	28.11.18	58	13.12.18	59	18.1.19	62	7.2.19	65	15.3.19	68		Not Runnig
		SO ₂	600 mg/Nm3	1	97	1	92		95		97		90		During Visit
		NOx	600 mg/Nm3	1	105	1	108		110		116		112		
3	FBC boiler No.3	PM	100 mg/Nm3	28.11.18	62	14.12.18	65	18.1.19	66	6.2.19	68	13.3.19	70	18.4.19	80
		SO ₂	600 mg/Nm3		107	1	109		115		118		125		128
		NOx	600 mg/Nm3		119	1	121		125		128		135		145
4	Hot Oil Unit	PM	150.0 mg/Nm3	23.11.18	ND	6.12.18	ND	3.1.19	ND	23.2.19	ND	27.3.19	ND	10.4.19	ND
	(Resorcinol Plant)	SO ₂	100 ppm	1	ND	1	ND		ND		ND		ND		ND
		NOx	50 ppm		35	1	39		41		43		40		45
5	DG set 1010 KVA (Standby)	PM	150 mg/Nm ³		Stand by		Stand by		Stand by		Stand by		Stand by		Stand by
		SO ₂	100 ppm												
		NOx	50 ppm	1											
West	Site				ı										
6	FBC boiler W1	PM	100 mg/Nm3	28.11.18	51	6.12.18	58	25.1.19	55	25.2.19	57	15.3.19	61	10.4.19	65
		SO ₂	600 mg/Nm3	1	75	1	79		75		79		85		95
		NOx	600 mg/Nm3	ĺ	115	1	123		115		123		128		135
7	Hot Oil Plant shed-B	PM	150.0 mg/Nm3	23.11.18	ND	6.12.18	ND	3.1.19	ND	1.2.19	ND	27.3.19	ND	25.4.19	ND
		SO ₂	100 ppm		ND	1	ND		ND		ND		ND		ND
		NOx	50 ppm	ĺ	36	1	38		39		41		43		55
8	Oil burner Shed B	PM	150.0 mg/Nm3		Stand by		Stand by		Stand by		Stand by		Stand by		Stand by
	(Stand By)	SO ₂	100 ppm												
		NOx	50 ppm	ĺ											
9	Boiler (50 TPH 2 Nos) (New boilers) W2,W3	РМ	50 mg/Nm3	21.11.18	38	26.12.18	35	25.1.19	38	22.2.19	41	15.3.19	49	12.4.19	55
	,	SO ₂	600 mg/Nm3		88	1	85		88		91		97		105
		NOx	300 mg/Nm3	1	73	1	71		75		79	1	85	1	95
		Mercury	0.03 mg/Nm3	1	ND	1	ND		ND		ND	1	ND	1	ND
10	DG set 1500 KVA	PM	150.0 mg/Nm3		Stand by		Stand by		Stand by		Stand by		Stand by		Stand by
	(Stand By)	SO ₂	100 ppm												
		NOx	50 ppm	1			1								
North	Site	•	•	•	•										
11	Thermic fluid heater of	PM	150.0 mg/Nm3	21.11.18	ND	27.12.18	ND	24.1.19	ND	23.2.19	ND	6.3.19	ND	12.4.19	ND
	DCO/DAP Plant	SO ₂	100 ppm	1	ND	1	ND	1	ND	7	ND		ND		ND
		NOx	50 ppm	1	28	1	29	1	31		35	1	39	1	40

Page 14 of 16

Table 2 : Fugitive Emission Monitoring details

Plant Area Parameter Prescribed Results of VOCs in Milligram per NM³ Limit									
				Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19
2,4 D	Reactor	Phenol	19	10.2	14.1	9.2	12.6	13.2	12.4
	Buffer tank	Chlorine	3.0	1.4	1.1	0.8	1	1.6	2.1
Resorcinol	Benzene storage tank area near vent	Benzene	15	9.6	11.1	14	9.2	7.1	5.4
	Near Extraction/scrubber unit	Butyl acetate	-	1.6	2.9	5.5	7.1	10.8	7.5
Pharma	At second floor work area	Ammonia	18	13.2	12.2	9.9	14.6	10.4	10.1
	Ammonia recovery area	Ammonia	18	3.1	7.2	12.2	6.4	8.1	7.5
Ероху - І	At vacuum pump 2nd floor	ECH	10	2.6	3.6	5.4	3.1	2.9	3.8
	At vessel POS 1208 G.F	ECH	10	4.1	5	3.1	6.2	5.3	6.1
Shed H	At second floor work area	Nitrobenzene	5	1.3	2.5	1.8	2.8	3.7	4.4
Shed J	Buffer Tank	Chlorine	3	1.1	1.8	2.2	1.6	2.6	2.1

Table 3 : Quality of treated effluent

Sr. No.	Parameter	Results						GPCB Limits
		Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	
1	рН	7.08	7.25	7.4	7.48	7.95	7.45	5.5 to 9.0
2	Temperature °C	30.2	30.8	30.1	30.7	32.6	31.9	40 °C
3	Colour (pt. co. scale)in units	50	50	40	50	70	130	
4	Suspended solids, mg/l	38	54	36	23	75	86	100
5	Phenolic Compounds, mg/l	0.28	0.35	0.46	0.56	0.75	0.45	5
6	Cyanides, mg/l	ND	ND	ND	ND	ND	ND	0.2
7	Fluorides, mg/l	0.55	0.45	0.32	0.45	0.65	1.2	2
8	Sulphides, mg/l	0.4	1.2	1.8	1.2	1.8	1.6	2
9	Ammonical Nitrogen, mg/l	42	48	40	36	32	40	50
10	Total Chromium, mg/l	ND	ND	ND	ND	ND	ND	2
11	Hexavelent Chromium, mg/l	ND	ND	ND	ND	ND	ND	1
12	BOD (3 days at 27°C), mg/l	44	58	68	64	70	65	100
13	COD, mg/l	210	232	226	202	220	210	250

Note: ND is Not Detectable.

Table 4: Noise level monitoring data (Day Time)

Sr. No.	Location			Noise		Permissible Limits, dBA		
		Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	75
1	Near Main guest house	63.6	63.8	64.2	65.2	65.9	68.9	75
2	Near TSDF	63.8	63.3	63.8	64.3	63.2	66.2	75
3	At Wyeth Colony	63.6	63.9	64.5	65.3	66.8	60.4	75
4	Gram Panchayat Hall	61.9	61.3	62.4	63.5	64.2	69.5	75
5	Near Main Office North	65.5	65.8	66.9	67.8	67.9	66.5	75
	site							
6	ETP North site	66.5	66.7	67.3	68.3	69.1	70.2	75
7	Opposite shed D	64.7	64.9	65.4	66.5	67.2	68.9	75
8	ETP West site	65.9	65.4	66.8	67.9	68.5	68.7	75
9	Water tank Haria road	62.9	62.5	63.1	64.2	64.9	64.5	75
10	Near 66KVA substation	64.3	64.5	65.3	66.3	67.1	67.8	75

Table 5: Noise level monitoring data (Night Time)

Sr. No.	Location	Noise I	_evel, dB		Permissible Limits, dBA			
		Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	70
1	Near Main guest house	53.1	53.5	55.6	56.1	55.7	56.1	70
2	Near TSDF	56.9	56.4	57.8	58.3	60.1	60.3	70
3	At Wyeth Colony	50.8	50.5	51.3	52.4	52.5	52.4	70
4	Gram Panchayat Hall	52.7	52.1	53.4	54.2	54.7	55.1	70
5	Near Main Office North site	55.7	55.9	56.8	57.8	58.5	58.9	70
6	ETP North site	52.5	52.2	53.7	54.1	54	55.1	70
7	Opposite shed D	53.8	53.8	54.9	55.2	55.3	55.9	70
8	ETP West site	54.8	54.7	55.8	55.9	56.2	56.3	70
9	Water tank Haria road	53.7	53.4	54.9	55.2	55.8	55.2	70
10	Near 66KVA substation	51.8	51.7	53.7	54.8	55.1	56.2	70

ANALYSIS REPORT FOR WATER / WASTE WATER SAMPLE

Sample ID:254051 - Analysis Completion:11/03/2019

Dves and Dve-Intermediates / LAB Inward: 48708

Gujarat Pollution Control Board, Vapi C5/124, GIDC Vapi, Near Hotel Pritam, Vapi - 396 195 Tele:(0260) 2432089

TEST REPORT

Test Report No.: 48708 Date: 12/03/2019

1. Name of the Customer : Atul Limited - 23158

2. Address : 5, 6, 29, 30, 33, 34, 35, 37, 38, 80, 81, 84, 85, 91, etc.,AT & P.O.ATUL, Dist. Valsad, Pin:

ATUL-396020, Taluka: Valsad, District: Valsad, GIDC: Not In Gidc

3. Nature of Sample : REP-Representative/Grab, (Insp Type : ROU-Routine Visit)

4. Sample Collected By : Rachana M. Kantharia, SO

: 5 lit 5. Quantity of Sample Received 6. Code No. of the Sample : 254051

7. Date & Time of Collection & Inwarding : 27/02/2019, (1800 to 1800) & 01/03/2019

8. Date of Start & Completion of Analysis : 01/03/2019 & 11/03/2019

: From final outlet of ETP (Central ETP) ~-9. Sampling Point

10. Flow Details (Remarks)

11. Mode of Disposal : Estuary zone of River Par 12. Ultimate Receiving Body : Estuary zone of river par

13. Temperature on Collection : 29 & pH Range on pH Strip :@ 7 to 8 On pH strip

14. Carboys Nos for : barcode & Color & Appearance : Brownish

15. Water Consumption & W.W.G (KLPD) : Ind:23726.000, Dom:938.000 & Ind:21727.000, Dom:939.000

Sr	Parameter	Unit	Test Method	Range of Testing	Result
1	Temperature	Centigrade	IS: 3025 (Part – 9) – 1984(Reaffirmed 2006)	Ambient oC - 60 oC	29
2	pH	pH Units	4500 H+ B APHA Standard Methods 22nd edi.2012	1 – 14 pH value As or	6.98
3	Colour	Pt.Co.Sc.	2120 B APHA Standard Methods 22nd edi. 2012	2 - to 99 Hazen & 1-50	125
4	Total Dissolved Solids	mg/l	Gravimetric method. (2540 C APHA Standard Method	10 – 200000 mg/L	3560
5	Suspended Solids	mg/l	Gravimetric method. (2540 D APHA Standard Method	2 – 10000 mg/L	54
6	Ammonical Nitrogen	mg/l	1).Titrimetric method (4500 NH3 B & C APHA Standa	1 - 2000 mg/l.	5.64
7	Chloride	mg/l	Argentometric method. (4500 CI? B APHA Standard N	1 - 50000 mg/l	1163
8	Sulphate	mg/l	APHA(22nd edi)4500 SO4 E	2-40mg/l	600
9	Chemical Oxygen Demand	mg/l	APHA (22nd Edition)- 5220 B Open Reflux Method-2	5.0- 50000 mg/l	242
10	Oil & Grease	mg/l	Liquid – Liquid Partition Gravimetric method. (5520 B	01 – 1000 mg/l	2.8
11	Phenolic Compounds	mg/l	4 Amino Antipyrene method without Chloroform Extra	0.1 – 50 mg/l	1.292
12	Sulphide	mg/l	APHA (22nd Edi.)4500-s2-F –iodometric Method	1-500.0 mg/l	BDL
13	B.O.D (3 Days 27oC)	mg/l	3 - Day BOD test. (IS 3025 (Part 44) 1993 Reaffirmed	05–50000 mg/l	55

Laboratory Remarks: Freeze By:445-lab_445 Dt.: 12/03/2019

Jiga

J.D.OZA, Lab Head

Field Observation:

Note:

- 1. * These parameters are NOT covered under the scope of NABL.
- 2. The results refer only to the tested samples and applicable parameters. Endorsement of products is neither inferred nor implied.
- 3. Samples will be destroyed after 10 days from the date of issue of test report unless otherwise specified.
- 4. This report is not to be reproduced wholly or in part or used in any advertising media without the permission of the Board in writing.
- 5. The Board is not responsible for the authenticity for the samples not collected by the Board's officials.
- 6. Total liability of our laboratory is limited to the invoiced amount. Any dispute arising out of this report is subject to Gujarat Jurisdiction only.
- 7. Permissible Limits: as per Schedule VI of EPA Rules, 1986 as ammended by Second and Third ammendment 1993 for Effluents
- 8. Physicochemical and microbiological parameters, Std.Methods for Water and Waste Water- 22nd Edition by APHA.
- 9. Bioassay test (for toxicity) -IS:6582:Part-2:2001; Reaffirmed 2007.

"PRELIMINARY STUDY FOR GROUND WATER QUALITY & SOIL"

For

ATUL LIMITED
P.O ATUL-396 020,
DIST: - VALSAD.

DECEMBER-2018

Prepared By:

Pollucon Laboratories Pvt. Ltd.

Plot No.5/6, "Pollucon House",
Opp. Balaji Industrial Society, Old Shantinath Silk mill Lane,
Near Gayatri farsan Mart, Navjivan circle,
Udhana Magdalla Road, Surat 3905007.
PHONE/FAX: [0261] 2455751, 2601224, 2601106

Web: www.polluconlab.com E- mail: pollucon@gmail.com

"PRELIMINARY STUDY FOR GROUND WATER QUALITY & SOIL"

For

ATUL LIMITED
P.O. ATUL-396 020,
DIST: - VALSAD

DECEMBER-2018

For and on behalf of Pollucon Laboratories Pvt. Ltd., Surat

Approved by : Dr. Arun Kumar Bajpai

Signed : Jenney

Designation : Lab Manager (Q)

Year : December 2018

This report is prepared by Pollucon Laboratories Pvt. Ltd. with all reasonable skills, care and diligence, incorporating our General Terms and Conditions of Business and taking account of the resources devoted.

CONTENT

SR. NO.	TITLE	PAGE NO.
1	INTRODUCTION OF POLLUCON LABORATORIES PVT. LTD.	04
1.1	SAMPLING AND ANALYTICAL METHODS FOR GROUND WATER	06
1.2	SAMPLING AND ANALYTICAL METHODS FOR SOIL	07
2	INTRODUCTION OF ATUL LTD.	08
3	IMPORTANCE OF UNDER GROUND WATER	10
4	QA/QC PROCEDURE	12
4.2	CHECKLIST FOR SAMPLE ANALYSIS AND CHAIN OF CUSTODY	13
4.3	LABORATORY ANALYSIS	13
4.4	CHECK LIST FOR SAMPLE INTEGRITY	14
4.5	CHECK LIST FOR SAMPLE ANALYSIS	14
5	SCOPE OF WORK SAMPLING, ANALYSIS & RESULT	15
5.1	SAMPLING LOCATIONS FOR GROUND WATER	17
5.2	SAMPLING LOCATIONS FOR SOIL	18
6	WATER SAMPLING TEST REPORT	19
7	SOIL SAMPLING TEST REPORT	42
8	CONCLUSION	48

LIST OF ANNEXURE

SR. NO.	TITLE
I	CREDENTIALS OF POLLUCON LABORATORIES PVT. LTD.
А	NATIONAL ACCREDITATION BOARD FOR TESTING AND CALIBRATION LABORATORIES
В	ISO 9001:2008
С	ISO 14001:2004
D	OHSAS 18001:2007
E	GUJARAT POLLUTION CONTROL BOARD ENVIRONMENTAL AUDIT RECOGNITION

1. INTRODUCTION

OF
POLLUCON LABORATORIES PVT.
LTD.

1. Introduction

Pollucon Laboratories Pvt. Ltd., Plot No.5/6 "Pollucon House", Opp. Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India have been in the analytical field since long time and have adequate expertise, trained man power and required infrastructure to render the uninterrupted service; Backed by a dedicated team we intend to give you a comprehensive analytical service with statutory interpretation and timely information vital for addressing the regulatory compliance.

We have so far a proven track record for successfully giving such services to various power plants, chemical factories and large scale set up and always met their demand for timely and effectively attendance to address the compliance solutions.

Apart from such set up as stated above following are our credential:

Laboratories are recognized by Ministry of Environment & Forest, Government of India, New Delhi under the EPA- article 12 A. along with the recognition as Environmental Auditors under the Honorable High Court; Gujarat Orders.

Laboratory set up is having international recognition from NABL (National accreditation board for Laboratories) under the ministry of Science & Technology as per ISO 17025:2005 for the relevant scope.

Entire administration and operations of the unit is as per ISO 9001:2008 quality systems and is certified by TUV consultants. (OHSAS 18000 & ISO 14001).

1.1 Sampling and Analytical Methods For Groundwater

Sampling and analytical methods are the important criteria for any tests and analysis as the accuracy of test results are dependent on the test methods selected for sampling and analysis besides the experience of the personnel. We have adopted IS (Indian Standards Methods), USDA (United States Department of Agriculture) & other standard methods for sampling and analysis.

Test Method:

SR. NO.	PARAMETERS	TEST METHOD	
1	Colour	IS3025(P-4)83Re.02	
2	рН	IS3025(P-11)83Re.02	
3	Suspended Solids	IS3025(P-17)84Re.02	
4	Total Dissolved Solids	IS3025(P-16)84Re.02	
5	Chloride as Cl	IS3025(P-32)88Re.99 Argentometric method	
6	Oil & Grease	APHA(22 nd Edi)5520 B	
7	Phenolic Compound as C ₆ H ₅ OH	IS3025(P-43)92Re.03 4-Aminoantipyrine	
	•	method	
8	Hexavelant Chromium as Cr ⁺⁶	APHA(22 nd Edi)3500Cr B Colorimetric method	
9	Sulphate as SO ₄	IS 3025 (P-24)1986	
10	Cyanide as CN	APHA(22 nd Edi)4500CN E Colorimetric &	
10		Tritemetric	
11	COD	APHA(22 nd Edi) 5220-B OPEN REFLUX	
12	BOD (3 Days @ 27°C)	IS 3025 (P-44)1993	
13	Sulphide as S	APHA(22 nd Edi) 4500-S	
14	Ammonical Nitrogen as NH ₃	IS:3025 (P-34) 1988 (Re.2003)	
15	Total Hardness as CaCO₃	IS3025(P-21)84EDTARe.02	
16	Total Alkalinity	IS3025(P-23)86Re.03	
17	Mercury as Hg	AAS APHA(22ndEdi)3112 B	
18	Calcium as Ca	IS3025(P-21)84EDTARe.02	
19	Magnesium as Mg	133023(F-21)04EDTANE.U2	
20	Fluoride as F	APHA(22 nd Edi) 4500 F D SPANDS Method	

1.2 Sampling and Analytical Methods For Soil

Sampling and analytical methods are the important criteria for any tests and analysis as the accuracy of test results are dependent on the test methods selected for sampling and analysis besides the experience of the personnel. We have adopted IS (Indian Standards Methods), USDA (United States Department of Agriculture) & other standard methods for sampling and analysis.

Test Method:

SR. NO.	PARAMETERS	TEST METHOD
1	pH	IS:2720(P-26)1987
2	COD	SOP PLPL
3	Chloride	Soil Manual of India
4	Sulphate	IS:2720(P-27)
5	Organic Matter	IS:2720(P-22)1972
6	Colour	Soil Manual of India
7	Soil Texture	Soil Manual of India
8	Nature Moisture Content	IS:2720(P-2)
9	Bulk Density	Soil Manual of India
10	Mercury	USEPA 3050 B
11	Total Nitrogen	FCO 2018

2.Introduction

Of
ATUL LIMITED
P.O ATUL-396 020,

Introduction

The industrial activities of Atul Ltd. are situated at north bank of River Par in Valsad district. Atul Ltd was founded on September 15, 1947 – exactly a month after Indian independence – by Kasturbhai Lalbhai, an institution builder par excellence and a legendary Indian of his times. The Company was a manifestation of his dream to generate large-scale employment, create wealth in rural India and make the country self-sufficient in its requirements of chemicals. The first Prime Minister of the country, Mr. Jawaharlal Nehru inaugurated Atul Ltd.

Presently Atul Ltd is one of the largest integrated chemical companies of India and amongst the first five manufacturers of its chosen chemicals in the world. Atul is an improvement driven, integrated chemical company serving about 6,000 customers belonging to 31 industries across the world. The Company has established subsidiary companies in the USA (1994), the UK (1996), China (2004), Brazil (2012) and the UAE (2015) to serve its customers and thus enhance breadth and depth of its business.

The company manufactures different products like Dyes and Intermediates, Chloro – alkali products, variety of Pesticides, Bulk Drugs and Pharmaceuticals, Bulk chemicals and intermediates, Different types of Resins etc. products and serves to customers belonging to the Adhesives, Agriculture, Animal Feed, Automobile, Chemical, Composites, Construction, Cosmetic, Defence, Dyestuff, Electrical and Electronics, Flavour, Food, Footwear, Fragrance, Glass, Home Care, Horticulture, Hospitality, Paint and Coatings, Paper, Personal Care, Pharmaceutical, Plastic, Polymer, Rubber, Soap and Detergent, Sports and Leisure, Textile, Tyre and Wind Energy industries. The companyuse variety of raw materials and consumption of fresh water is drawn from Par River.

As a part of Sp. Condition 3 of Environmental Clearance No. SEIAA/GUJ/EC/1(d)/340/2016, Atul Ltd has to submit the detailed study report to Gujarat Pollution Control Board (GPCB) at least once in a year, through the reputed institute or university to assess the impacts on soil and ground water quality. Hence the purpose of the present study is to evaluate soil and groundwater quality in and around Atul.

3. Importance of Ground Water

IMPORTANCE OF GROUND WATER

As ground water is an immensely important resource, However We Affect ground water Quantity Overuse of ground water for urban, rural and industrial uses can cause temporary or permanent declines in the quantity of available ground water. In coastal area fresh water supplies become contaminated with saltwater.

So, the chemistry of water is influenced as it flows downward through soil and the unsaturated zone.

Man-made depression in the ground that collects runoff water and stores it, permitting it to slowly percolate into the soil.

In nature, even the cleanest water contains some impurities that come from the erosion of natural rock formations. Water dissolves and absorbs substances that it touches, including calcium, magnesium, silica, and fluoride from dozens of naturally occurring minerals.

Another related problem concerns changes we make in the recharge rate. When recharge areas are paved with roads and parking lots or are covered with impervious surfaces such as rooftops, water cannot soak into the ground and replenish the ground water supplies. Adding to the problem, paved surfaces collect oils, salts, animal waste, antifreeze, and other pollutants. When it rains, these pollutants become part of the storm water runoff. So it is an important lesson – if we want clean GROUND WATER and surface water, we need to prevent all possible pollutants from being poured on the ground or spilled onto our parking lots and roads.

At low levels, most of these dissolved minerals do not cause health problems, and can even give water an appealing taste. Some of these minerals determine how "soft' or "hard" our water is, and some may produce an unpleasant odor or taste. At higher levels, minerals can be considered contaminants, and like man-made chemicals, can make water unpalatable or unsafe to drink. In some areas, iron, manganese, and sulfate occur locally in objectionable concentrations.

Most GROUND WATER contamination is the result of human activity. Just as our surface freshwater resources (i.e., rivers, wetlands) are influenced by geologic processes and the activities of humans, so too is ground water

4. QA/QC PROCEDURE

4. QA/QC Procedure

4.1 Scope

The scope of QA plan for the above mentioned study includes a minimum of following elements.

- preservation
- Chain of custody
- Laboratory

4.2 Checklist for analysis and chain of custody

Sample Forwarding

After the registration of sample for analysis, the Draft Test report is prepared and handed over to concerned laboratory in-charge and analytical jobs were allotted to specific scientific staff. The concerned analysts have started the analysis after verifying the integrity of the samples.

Chain of Custody

Chain of custody records is maintained for each sample to accompany the sample or set of samples from the point final analysis.

4.3 Laboratory Analysis

Calibration

The Lab Manager has ensured that all the laboratory instruments are calibrated as per calibration plan.

Documentation

All the raw data have been recorded in the raw data register along with the details relating to the sample identification No., date etc.

Lab has also recorded the details relating various quality check procedures or deviation if any.

4.4 Check List for Sample integrity

Item	Yes or No	If No, reasons and Justification for Acceptance
Is the chain of custody recorded?	Yes	Yes
Is the chain of custody record filled in properly?	Yes	Yes
Is the seal on the sample containers intact?	Yes	Yes
Is the sample received in proper storage condition?	Yes	Yes
Is the sample quantity adequate for required analysis?	Yes	Yes
Checked By: Inspected By: Lab Manager		

Note: It is not necessary that this form be filled in for each sample/ sampling point.

It is sufficient if the deviations if any are recorded.

4.5 Check List for Analysis

Item	Yes or No	If No, reasons and Justification for Acceptance
Was the correct method used for the analysis?	Yes	Yes
Were the correct instruments, equipment and apparatus used for the analysis?	Yes	Yes
Was the competence of the analyst deployed for the analysis verified?	Yes	Yes
Were the instruments, equipment and apparatus used precalibrated as required?	Yes	Yes
Was the sample correctly and adequately identified?	Yes	Yes
Were all the raw data properly recorded in the Raw data register?	Yes	Yes
Were the correct equations and units used?	Yes	Yes
Checked By: Inspected By: Lab Manager		

Note: It is not necessary that this form be filled in for each sample/ sampling point.

It is sufficient if the deviations if any are recorded.

QC CHECK - I Check List for Quality Check

Sr. No.	Parameters	Comment (Yes or No)	Remark
1.	Sample container labeled properly?	Yes	Yes
2.	Is Sample Container clean & dry?	Yes	Yes
3.	Are proper storage conditions are maintained?	Yes	Yes
4.	The sample quantity is adequate?	Yes	Yes
5.	Is sample properly identified?	Yes	Yes
6.	Is proper type of container used?	Yes	Yes

Note: It is not necessary that this form be filled in for each sample/ sampling point.

QC CHECK - II

Check List for Quality Check in the lab

Sr. No.	Parameters	Comment (Yes or No)	Remark
1.	Is the sample details entered into Sample Inventory code?	Yes	Yes
2.	Sample quantity measured	Yes	Yes
3.	Glassware is calibrated	Yes	Yes
4.	Balance / equipments are calibrated	Yes	Yes
5.	Data entered in the raw data register or not?	Yes	Yes
Inspected	Inspected By: Lab Manager		

Note: It is not necessary that this form be filled in for each sample/ sampling point. It is sufficient if the deviations if any are recorded.

5. SCOPE OF WORK SAMPLING, ANALYSIS & RESULT

5. 1 Sampling Locations For Ground Water

Sr. No.	Sampling Location
1	Borewell near Spic 4 plant, North site, Atul Ltd
2	Borewell near R & D Lab, North Site, Atul Ltd
3	Borewell near R & D Lab, west Site, Atul Ltd
4	Borewell opp. East of New Boiler, West Site, Atul Ltd
5	Borewell at west of Old fire pond, West Site, Atul Ltd
6	Borewell at east of Shed A Plant, West Site, Atul Ltd
7	Borewell near Sulfa viofom Plant, East Site, Atul Ltd
8	Borewell near T acid Plant, East Site, Atul Ltd
9	Borewell at north of Caustic soda Plant, East Site, Atul Ltd
10	Borewell near Easter Plant, East Site, Atul Ltd
11	Borewell at Madan Mohan Goushala, Haria village
12	Borewell at down stream of TSDF (Borewell No. 3), Atul Ltd
13	Borewell at Up stream of TSDF (Borewell No. 5), Atul Ltd
14	Borewell near Main gate of GJK colony, Atul Village
15	Borewell near gate of Atik colony, Atul Village
16	Borewell near cross road of Down colony, Atul Village
17	Borewell near Hardner Plant, North Site, Atul Ltd
18	Well at Ishvarbhai's wadi, Haria Village
19	Hand Pump at Mahesh Park, Haria Village
20	Panchayat Hand Pump Near Railway Crossing, Haria Village
21	Hand Pump at First gate, poultry farm road, Parnera village
22	Hand Pump near Derasar, Second gate, Atul Village

^{# :} Detail given by customer

5.2 Sampling Locations For Soil

SR. NO.	SAMPLING LOCATION
1	NEAR BOILER PLANT WEST SITE
2	NEAR ETP PLANT NORTH SIDE
3	NEAR TE UNIT SOUTH SITE
4	NEAR MPP2 PLANT ABL
5	NEAR SULPHURIC PLANT EAST SIDE

^{# :} Detail given by customer

6 WATER SAMPLING TEST REPORT

QR/5.10/01

Customer's Name and Address:

Page: 1 of 1

ATUL LIMITED

Test Report No.: PLPL/181220036

P.O ATUL-396 020,

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Sample Receipt Date : 20/12/2018 Lab ID : PLPL/181220036 Packing/Seal : Sealed Test of Parameters : As Per Table

Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019 Identification of Sample : Borewell Near Spic 4 Plant, North Site, Atul Ltd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	2	Max 5	Max 15	IS3025(P-4)83Re.02
2	рH		7.12	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	11			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	478	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	45.98	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	29.15	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	5.70	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	110	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	90	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	34.4	Max 75	Max 200	IC202E/D 21\04FDTAD= 02
19	Magnesium as Mg	mg/L	5.76	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.59	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

 $\label{eq:continuit} Detection \ Limit: Oil \& \ Grease: <2 \ , \ Phenolic \ Compound: <0.005, \ Hexavelent \ Chromium \ as \ Cr+6: <0.05, \ Cyanide \ as \ CN: <0.0001, \ Sulphide \ as \ S: <0.025, \ Mercury \ as \ Hg: <0.001.$

\$: Not Detected, # : Detail given by customer.

0(-0

QR/5.10/01 Page: 1 of 1

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of

Test Report No.: PLPL/181220037

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell Near R & D Lab, North Site, Atul Ltd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	3	Max 5	Max 15	IS3025(P-4)83Re.02
2	рН		7.31	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	14			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	496	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	52.98	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	66.56	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.66	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	196	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	106	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	48.8	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	17.76	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.48	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

Customer's Name and Address:

TEST REPORT

QR/5.10/01 Page: 1 of 1

ATUL LIMITED
P.O ATUL-396 020,
Issue Date : 21/01/2019
Customer's Ref. : As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell Near R & D Lab, West Site, Atul Ltd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	2	Max 5	Max 15	IS3025(P-4)83Re.02
2	рН		7.15	6.5 – 8.5	-	IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	10	-	-	IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	438	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	42.98	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1	1	APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	32.10	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	4.97	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	164	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	106	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	52.8	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	7.68	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.35	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

\$: Not Detected, # : Detail given by customer.

Customer's Name and Address:

TEST REPORT

QR/5.10/01 Page: 1 of 1

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Test Report No.: PLPL/181220039
Issue Date: 21/01/2019
Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell opp. East Of New Boiler, West Site, Atul Ltd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	4	Max 5	Max 15	IS3025(P-4)83Re.02
2	рH		7.47	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	3			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1012	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	112	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	97.15	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.51	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	336	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	276	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	76.0	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	35.04	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.82	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit : Oil & Grease : < 2, Phenolic Compound : < 0.005, Hexavelent Chromium as Cr+6 : < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

\$: Not Detected, # : Detail given by customer.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED

P.O ATUL-396 020,

DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220040

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell at West of Old fire pond, West Site, Atul Ltd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.49	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	17			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	568	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	38.98	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	25.78	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.59	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	236	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	156	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	77.6	Max 75	Max 200	IC202E/D 21\04EDTAD
19	Magnesium as Mg	mg/L	10.08	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.13	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

\$: Not Detected, # : Detail given by customer.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED

P.O ATUL-396 020,

DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220041

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell at Eest of Shed A Plant, West Site, Atul Ltd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.56	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	13			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	592	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	31.99	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	27.65	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.68	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	262	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	258	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	67.2	Max 75	Max 200	IC202E/D 21\04EDTAD
19	Magnesium as Mg	mg/L	22.56	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	1.25	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220042

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell near sulfa Viofom Plant, East Site, Atul Ltd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	8.19	6.5 – 8.5	-	IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	9	-	-	IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	312	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	17.99	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5	-	APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	24.25	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.59	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	100	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	94	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	29.6	Max 75	Max 200	IS3025(P-21)84EDTARe.02
19	Magnesium as Mg	mg/L	6.24	Max 30	Max 100	,
20	Fluoride as F	mg/L	0.28	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

\$: Not Detected, #: Detail given by customer.

Customer's Ref. : As Per Quotation

TEST REPORT

QR/5.10/01

Customer's Name and Address: Page: 1 of 1 Test Report No. : PLPL/181220043 **ATUL LIMITED** P.O ATUL-396 020, Issue Date : 21/01/2019 **DIST:VALSAD.**

Description of Sample **Water Sample** Quantity/No. of Samples : 02 Ltr/01

: QC Sampling Date Protocol (Purpose) 20/12/2018

Sample Receipt Date : PLPL/181220043 20/12/2018 Lab ID

Packing/Seal **Test of Parameters** : As Per Table **Sealed** Date of Starting of Test 20/12/2018 **Date of Completion** : 21/01/2019

Borewell near T acid Plant, East Site, Atul Ltd # Identification of Sample

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	3	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.51	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	23			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	386	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	63.98	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	11.87	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.64	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	144	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	64	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	44.8	Max 75	Max 200	IS3025(P-21)84EDTARe.02
19	Magnesium as Mg	mg/L	7.68	Max 30	Max 100	` ,
20	Fluoride as F	mg/L	0.11	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

\$: Not Detected, # : Detail given by customer.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220044

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019
Identification of Sample : Borewell At north of Caustic soda plant, East Site, Atul Ltd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	4	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН		7.32	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	22			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1376	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	135	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	28.68	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.66	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	526	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	524	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	127	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	49.92	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.44	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220045

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell near Easter plant, East Site, Atul Ltd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	6.7	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	24			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1894	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	920	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	384	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.55	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	183	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	540	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	56	Max 75	Max 200	IC202E/D 21\04EDTAD
19	Magnesium as Mg	mg/L	10.32	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	1.05	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED

P.O ATUL-396 020,

DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220046

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell at Madan Mohan Goushala, Haria Village*

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН		7.42	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	11			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1264	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	87.97	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	95.28	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.59	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	556	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	306	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	126	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	57.60	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.58	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

\$: Not Detected, # : Detail given by customer.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220047

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019
Identification of Sample : Borewell at Down stream of TSDF (Borewell No.3),Atul Itd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.14	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	15			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1116	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	139	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	65.12	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	6.52	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	512	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	284	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	153	Max 75	Max 200	IC202E/D 21\04EDTAD
19	Magnesium as Mg	mg/L	30.72	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.25	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220048

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell at Up stream of TSDF (Borewell No.5), Atul Itd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	6.96	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	7			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	892	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	107	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	66.44	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	4.72	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	544	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	210	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	152	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	39.36	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.57	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220049

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell Near Main Gate of GJK colony, Atul village #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	6.8	6.5 – 8.5	-	IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	28	-	-	IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	658	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	73.9	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5	-	APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	-		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	23.83	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	5.35	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	290	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	248	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	71.2	Max 75	Max 200	IS3025(P-21)84EDTARe.02
19	Magnesium as Mg	mg/L	26.88	Max 30	Max 100	, ,
20	Fluoride as F	mg/L	< 0.05	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220050

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell near Gate of Atik colony, Atul Village #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.48	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	ND ^{\$}			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	672	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	50.98	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	28.76	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	5.16	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	302	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	266	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	23.52	Max 75	Max 200	IC202E/D 21\04EDTAD
19	Magnesium as Mg	mg/L	81.60	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.18	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED

P.O ATUL-396 020,

DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220051

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell near cross road of Down colony, Atul Village #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	рН		7.93	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	ND ^{\$}			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	688	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	51.98	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	23.65	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.86	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	338	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	288	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	91.20	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	26.40	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.57	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220052

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell near Hardner Plant, North Site, Atul Itd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	4	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	6.85	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	16			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1910	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	920	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	140	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	10.40	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	190	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	280	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	55.2	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	12.48	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.99	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

Customer's Ref. : As Per Quotation

TEST REPORT

QR/5.10/01

Customer's Name and Address: Page: 1 of 1 Test Report No. : PLPL/181220053 **ATUL LIMITED** P.O ATUL-396 020, Issue Date : 21/01/2019 **DIST:VALSAD.**

Description of Sample **Water Sample** Quantity/No. of Samples : 02 Ltr/01

: QC Sampling Date Protocol (Purpose) 20/12/2018

Sample Receipt Date : PLPL/181220053 20/12/2018 Lab ID

Packing/Seal Test of Parameters : As Per Table **Sealed** Date of Starting of Test 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample Well at Ishvarbhai's wadi, Haria Village#

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	4	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.01	6.5 – 8.5	-	IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	11			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1502	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	319	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5	-	APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1	1	APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	62.07	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	5.86	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	184	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	304	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001	-	AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	52	Max 75	Max 200	IC202E/D 21\04EDTAD
19	Magnesium as Mg	mg/L	12.96	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.35	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

\$: Not Detected, # : Detail given by customer.

QR/5.10/01

Customer's Name and Address: Page: 1 of 1 Test Report No. : PLPL/181220054 **ATUL LIMITED** P.O ATUL-396 020, Issue Date : 21/01/2019 **DIST:VALSAD.** Customer's Ref. : As Per Quotation

Description of Sample Quantity/No. of Samples : 02 Ltr/01 **Water Sample**

: QC Sampling Date Protocol (Purpose) 20/12/2018

Sample Receipt Date : PLPL/181220054 20/12/2018 Lab ID

Packing/Seal Test of Parameters : As Per Table **Sealed** Date of Starting of Test 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample Hand pump at Mahesh Park, Haria Village#

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	3	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.20	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	17			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1444	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	283	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	83.57	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	5.21	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	528	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	428	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	129	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	48.96	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.87	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220055

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019
Identification of Sample : Panchayat hand pump near Railway Crossing, Haria Village#

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН		7.93	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	< 2			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	418	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	17.99	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	31.87	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	5.36	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	186	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	174	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	39.2	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	21.12	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.41	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220056

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019
Identification of Sample : Hand pump at First gate, poultry farm road, parnera village #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	3	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.38	6.5 – 8.5	-	IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	10	-	-	IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1214	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	127	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5	-	APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	< 0.05	-		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	25.78	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	5.55	Max 0.5	-	IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	516	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	344	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	131	Max 75	Max 200	IS3025(P-21)84EDTARe.02
19	Magnesium as Mg	mg/L	45.12	Max 30	Max 100	, ,
20	Fluoride as F	mg/L	0.65	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220057

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Hand pump near derasar, second gate, Atul village #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	4	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.19	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	8			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1084	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	119	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	< 0.05			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	39.63	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	5.10	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	512	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	388	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	118	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	51.84	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.58	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

\$: Not Detected, # : Detail given by customer.

7. SOIL SAMPLING TEST REPORT

TEST REPORT

Customer's Name and Address : Page: 1 of 1

ATUL LIMITED

P.O ATUL-396 020,

DIST:VALSAD.

Test Report No.: PLPL/181225011

Issue Date : 04/01/2019

Customer's Ref.: Verbal

Description of Sample : Solid Sample Quantity/No. of Samples : 03 Kg/01

Sampling By : Pollucon Lab.pvt.ltd. Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 25/12/2018 Date of Completion : 04/01/2019

Identification of Sample : NEAR BOILER PLANT WEST SITE#

SR. NO.	PARAMETERS	UNIT	RESULT	TEST METHOD
1	pH		7.87	IS:2720(P-26)1987
2	Chloride	mg/kg	34.31	Soil Manual of India
3	Sulphate	mg/kg	161	IS:2720(P-27)
4	Organic Matter	%	0.60	IS:2720(P-22)1972
5	Colour		Brownish	Soil Manual of India
6	Soil Texture		Sandy Loam	Soil Manual of India
7	Moisture Content	%	9.35	IS:2720(P-2)
8	Bulk Density	gm/cm ³	1.18	Soil Manual of India
9	Mercury	mg/kg	Not Detected	USEPA 3050 B
10	Total Nitrogen	%	2.14	FCO 2018

^{# :} Detail given by customer.

Page: 1 of 1

TEST REPORT

Customer's Name and Address:

 ATUL LIMITED
 Test Report No.: PLPL/181225012

 P.O ATUL-396 020,
 Issue Date : 04/01/2019

 DIST:VALSAD.
 Customer's Ref.: Verbal

Description of Sample : Solid Sample Quantity/No. of Samples : 03 Kg/01

Sampling By : Pollucon Lab.pvt.ltd. Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 25/12/2018 Date of Completion : 04/01/2019

Identification of Sample : **NEAR ETP PLANT NORTH SIDE**#

SR. NO.	PARAMETERS	UNIT	RESULT	TEST METHOD
1	pH		7.93	IS:2720(P-26)1987
2	Chloride	mg/kg	43.06	Soil Manual of India
3	Sulphate	mg/kg	121	IS:2720(P-27)
4	Organic Matter	%	1.98	IS:2720(P-22)1972
5	Colour		Dark Brown	Soil Manual of India
6	Soil Texture		Sandy Loam	Soil Manual of India
7	Moisture Content	%	15.40	IS:2720(P-2)
8	Bulk Density	gm/cm ³	1.17	Soil Manual of India
9	Mercury	mg/kg	Not Detected	USEPA 3050 B
10	Total Nitrogen	%	1.14	FCO 2018

^{# :} Detail given by customer.

TEST REPORT

Customer's Name and Address:

ATUL LIMITED

DIST:VALSAD.

P.O ATUL-396 020,

Page: 1 of 1

04/01/2019

Test Report No.: **PLPL/181225013**

Customer's Ref.: Verbal

Issue Date

Description of Sample : Solid Sample Quantity/No. of Samples : 03 Kg/01

Sampling By : Pollucon Lab.pvt.ltd. Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 25/12/2018 Date of Completion : 04/01/2019

Identification of Sample : **NEAR TE UNIT SOUTH SITE**#

SR. NO.	PARAMETERS	UNIT	RESULT	TEST METHOD
1	pH		8.27	IS:2720(P-26)1987
2	Chloride	mg/kg	14.99	Soil Manual of India
3	Sulphate	mg/kg	123	IS:2720(P-27)
4	Organic Matter	%	2.55	IS:2720(P-22)1972
5	Colour		Brown	Soil Manual of India
6	Soil Texture		Sandy Loam	Soil Manual of India
7	Moisture Content	%	23.08	IS:2720(P-2)
8	Bulk Density	gm/cm ³	1.19	Soil Manual of India
9	Mercury	mg/kg	Not Detected	USEPA 3050 B
10	Total Nitrogen	%	1.24	FCO 2018

 $[\]ensuremath{\textit{\#}}$: Detail given by customer.

TEST REPORT

Customer's Name and Address : Page: 1 of 1

ATUL LIMITED

P.O ATUL-396 020,

DIST:VALSAD.

Test Report No.: PLPL/181225014

Issue Date : 04/01/2019

Customer's Ref.: Verbal

Description of Sample : Solid Sample Quantity/No. of Samples : 03 Kg/01

Sampling By : Pollucon Lab.pvt.ltd. Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 25/12/2018 Date of Completion : 04/01/2019

Identification of Sample : NEAR MPP2 PLANT ABL#

SR. NO.	PARAMETERS	UNIT	RESULT	TEST METHOD
1	pH		8.38	IS:2720(P-26)1987
2	Chloride	mg/kg	24.85	Soil Manual of India
3	Sulphate	mg/kg	170	IS:2720(P-27)
4	Organic Matter	%	0.88	IS:2720(P-22)1972
5	Colour		Brown	Soil Manual of India
6	Soil Texture		Sandy Loam	Soil Manual of India
7	Moisture Content	%	19.55	IS:2720(P-2)
8	Bulk Density	gm/cm ³	1.22	Soil Manual of India
9	Mercury	mg/kg	Not Detected	USEPA 3050 B
10	Total Nitrogen	%	1.84	FCO 2018

^{# :} Detail given by customer.

TEST REPORT

Customer's Name and Address : Page: 1 of 1

ATUL LIMITED

P.O ATUL-396 020,

DIST:VALSAD.

Test Report No.: PLPL/181225015

Issue Date : 04/01/2019

Customer's Ref.: Verbal

Description of Sample : Solid Sample Quantity/No. of Samples : 03 Kg/01

Sampling By : Pollucon Lab.pvt.ltd. Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 25/12/2018 Date of Completion : 04/01/2019

Identification of Sample : **NEAR SULPHURIC PLANT EAST SIDE**#

SR. NO.	PARAMETERS	UNIT	RESULT	TEST METHOD
1	pH		8.18	IS:2720(P-26)1987
2	Chloride	mg/kg	184	Soil Manual of India
3	Sulphate	mg/kg	185	IS:2720(P-27)
4	Organic Matter	%	0.097	IS:2720(P-22)1972
5	Colour		Ligh Brown	Soil Manual of India
6	Soil Texture		Sandy Loam	Soil Manual of India
7	Moisture Content	%	12.80	IS:2720(P-2)
8	Bulk Density	gm/cm ³	1.09	Soil Manual of India
9	Mercury	mg/kg	Not Detected	USEPA 3050 B
10	Total Nitrogen	%	0.90	FCO 2018

^{#:} Detail given by customer.

8. CONCLUSION

- All Analyzed Parameters are within the norms of PERMISSIBLE LIMIT IN THE ABSENCE
 OF ALTERNATE SOURCE as per of IS 10500:2012 for drinking water (for parameters
 which limits are specified).
- Soil samples are taken from different location of site and no acidic soil is found at any location.
- Texture of soil is sandy loam at each sites.
- Toxic metal Mercury is not detected at all locations.

ANNEXURE I

CREDENTIALS OF POLLUCON LABORATORIES PVT. LTD.

A. NATIONAL ACCREDITATION BOARD FOR TESTING AND CALIBRATION LABORATORIES

National Accreditation Board for Testing and Calibration Laboratories

(A Constituent Board of Quality Council of India)

CERTIFICATE OF ACCREDITATION

POLLUCON LABORATORIES PVT. LTD.

has been assessed and accredited in accordance with the standard

ISO/IEC 17025:2005

"General Requirements for the Competence of Testing & Calibration Laboratories"

for its facilities at

5/6 "Pollucon House", Old Shantinath Mill Lane, Navjivan Circle, Udhana Magdalla Road, Surat, Gujarat

in the field of

TESTING

Certificate Number

I C-5945 (In lieu of T-0821 & T-0820)

Issue Date

28/05/2017

Valid Until

27/05/2019

This certificate remains valid for the Scope of Accreditation as specified in the annexure subject to continued satisfactory compliance to the above standard & the relevant requirements of NABL. (Le see the scope of accreditation of this laboratory, you may also visit NABL website www.nabl-india.org)

Signed for and on behalf of NABL

N. Venkateswaran Program Director Antelia

Anil Relia Chief Executive Officer

B. ISO 9001:2008

C. ISO 14001:2004

ZERTIFIKAT ◆ CERTIFICATE ◆ 認識 證書 ◆ CEPTM Φ M KAT ◆ CERTIFICADO ◆ CERTIFICA TON SIE TUR SUE TUN SUE TW SEE TUN SUE DIS YOU

CERTIFICATE

The Certification Body of TÜV SÜD Asia Pacific TÜV SÜD Group

certifies that

Pollucon Laboratories Pvt. Ltd. 444, 544- Belgium Tower, Opp. Linear Bus Stand, Ring Road, Surat - 395 003, Gujarat, INDIA

has established and applies an Environmental Management System for

Providing Environmental Audit,

Consultancy, Monitoring & Testing Services for Water, Air,

Hazardous waste & Food Products

An audit was performed. Report No. 20042248
Proof has been furnished that the requirements
according to

ISO 14001:2004

are fulfilled. The certificate is valid until 2018-03-11 Certificate Registration No. TUV104 07 2153

2015-01-26

Certification Body of TDV SDD Assis Pacific

(LV 8UD Karba Do. + 105 °41.10° Bidg., 650 °1965 Dang Hampbergoo-Gu + 150 √50 Sept + Koree

TUV 0

TUV SUB TUV SUI TUV SUB TUV SUB Seub Tuy sub Tuy so Tuy sub Tuy sub 19 sub

D. OHSAS 18001:2007

CERTIFICATE

The Certification Body of TÜV SÜD Asia Pacific TÜV SÜD Group

certifies that

Pollucon Laboratories Pvt. Ltd. 444, 544- Belgium Tower, Opp. Linear Bus Stand, Ring Road, Surat - 395 003, Gujarat, INDIA

has established and applies a Occupational Health and Satety Management System for

Providing Environmental Audit,
Consultancy, Monitoring & Testing Services for Water, Air,
Hazardous waste & Food Products

An audit was performed, Report No. 20042248

Proof has been furnished that the requirements according to

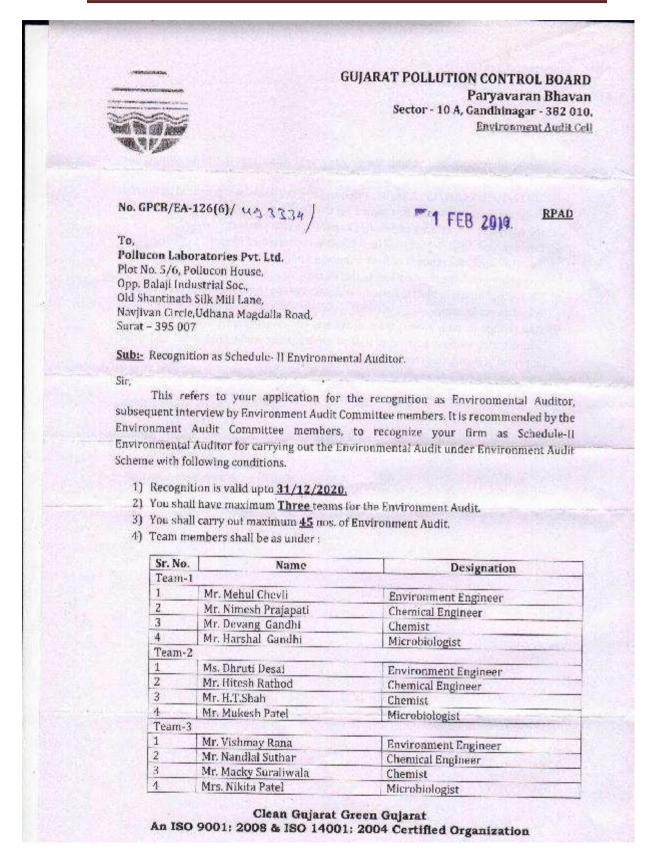
OHSAS 18001:2007

are fulfilled. The certificate is valid until 2018-03-11 Certificate Registration No. TUV116 07 2153

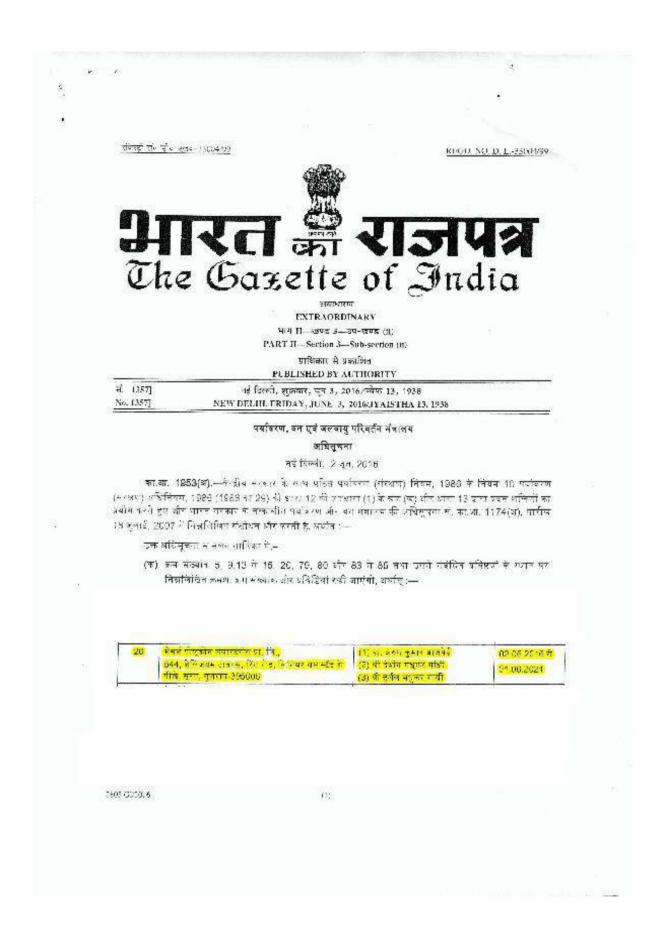
2015-01-26

SHA-Gartification Body

TOV BOD Group


Acres union to the John Acres don on System of the control and the Acres do Union.

Tibly S(ID Kensyllde ♦ 125, "Klass" steg. 486. Yolde-Dong Young (Ningto-Syr ♦ 150-715, Sent ♦ Krise


TUV"

E. GUJARAT POLLUTION CONTROL BOARD ENVIRONMENTAL AUDIT RECOGNITION

ENVIRONMENTAL AUDIT REPORT OF

M/S. ATUL LIMITED.

Plot No. 5, 6, 29, 30, 33, 34, 35, 37, 38, 80, 81, 84, 85, 91 & Survey No. 274, 275, 276

AT & PO ATUL – 396020, Dist.: Valsad.

[Audit Period: April 2018 - March 2019]

Prepared By:

PACIFIC SCHOOL OF ENGINEERING

(Centre for Environmental Research & Technology)

GPCB RECOGNISED SCHEDULE - I ENVIRONMENTAL AUDITOR

Address:

Kadodara Palsana Highway (NH-8), At. Sanki, Tal. Palsana, Dist. Surat - 394305. Ph: +91 9904408978

Email: cert.pse@gmail.com

OBSERVATIONS

- 1. The unit has been granted consolidated consent vide no. AWH-67717 dated 04/11/2014 which is valid up to 03/11/2019.
- 2. Industry is an improvement driven, integrated chemical company serving about 4,000 customers belonging to 27 industries across the world. The salient features of their infrastructure are as follows:

Land Area

500 hectares.

Effluent Drainage

4 Km.

system

Effluent Treatment

30,000 m³/day

Plants

Solid Waste Disposal :

Incinerator, TSDF, Co processing

Captive Power Plants

56 MW

Water Storage

1.6 million m³

- 3. Industry is ISO-14001:2004 certified company and has received more than 16 awards in the area of Environmental pollution control from prestigious organizations till 1998.
- Electricity consumption is decreased by 0.14 % in April 2018 March 2019 as compared to previous audit period April 2017 - March - 2018.
- Water consumption and Wastewater generation is increased by 7.81% and 9.39% respectively in April 2018 March 2019 as compared to previous audit period April 2017 March 2018.
- 6. Norms for production, final effluent discharge, ambient emission and stack emission are meeting the norms given by GPCB.
- 7. Final treated effluent is discharged in to an Arabian sea through Estuary Zone of Par River.
- 8. Industry owned TSDF site for disposal, recovery and incineration of hazardous waste.
- Industry has employed full time medical officer. Also, satisfactory medical facilities have been provided.
- 10. Fatal accident at phosgene plant reported during the audit period. Industry has taken necessary safety corrective actions.
- 11. Industry strictly follows the safety rules for wearing personal protective devices.
- 12. Company has shifted to membrane cell system and completely phase out Hg cell system for chlor-alkali production.
- 13. Industry has implemented various steps in the area of environmental management system. They are mainly:

"Centre for Environmental Research & Technolog PACIFIC SCHOOL OF ENGINEERING, SURA

Page 3 of 141

- First in Gujarat to have complete In-house Treatment facility for all types of waste.
- Liquid Waste: State-of-Art effluent treatment plant consisting of three operational Effluent Treatment Plants.
- Own 4 KM pipeline to discharge treated effluent in the estuary zone of river Par.
- · Own incinerator and TSDF for hazardous waste treatment.
- Over 50,000 saplings planted every year in and around Atul Complex.
- Water harvesting (850 million litre) and bore well recharging.
- 100% utilization of fly-ash.
- 14. Industry has implemented various steps for smooth functioning of EMS. It mainly includes recovery from process, natural resources conservation and cleaner production. Details of the same are enclosed herewith.

RECOMMENDATIONS

- Installation of effluent network system at above ground is underway. Recommendation for completion of job.
- 2. To control dustiness surrounding to ETP and Boiler, housekeeping is highly recommended.
- 3. It is recommended to install auto calibration system for OCEMS (Online Continuous Environmental Monitoring System) as per CPCB guidelines.
- 4. It is recommended to comply with conditions of Environmental Clearance received.
- 5. It is recommended to explore possibility of reusing condensate being generated from MEE.

ENVIRONMENTAL FRIENDLY REPLACEMENTS / IMPROVEMENTS IN, WITHIN AND AROUND THE INDUSTRY / ORGANIZATION /

Following are some examples of innovative approaches adopted to reduce the pollution load, saving renewable resources, adoption of cleaner technology in recent years:

❖ RECOVERY FROM MANUFACTURING PROCESS:

Recovery at source is proven to be the best solution for environmental treatment. The company has also focused on critical areas for various at source recovery for various purposes. This has not only reduced pollution load in EMS but also provided economic benefit. Details of some of at source treatment initiated in 18-19 and recent past are described below:

"Centre for Environmental Research & Technology"
PACIFIC SCHOOL OF ENGINEERING, SURAT

Page 4 of 141

ANNEXURE – 23 COMPLIANCE REPORT

	Detail	Has valid consent/authorization	Complying with standards & other conditions
(A)	Compliance Report of Water as per Water act, 1974. If No, Give comment	The consolidated consent vide	Complied
(B)	Compliance Report for Air as per Air act, 1981. If No, Give comment	no. AWH-67717 dated 04/11/2014 under the provision of water Act-1974,	Complied
(C)	Compliance Report for the storage and handling of hazardous	Air act-1981and Hazardous Rules-1989 is valid up to 03/11/2019.	Complied

Atul Limited

Project: Expansion of Pesticide and Synthetic Organic Chemicals manufacturing unit at post Atul, Dist. Valsad EC Compliance Report for the period November 2018-April 2019 as per EC F. No. J -11011/85/

o. Cor	ndition	Compliance							
	Conditions	•							
Indi	lustrial Waste water generation all not exceed 17,283 m³/d.	Complied.							
		The average which is well w							
		Wastewater generation	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	Total
		m³/day Month wise	256660	251819	243284	238044	300815	272559	156318
		Per day	8555	8123	7848	8502	9704	9085	Avg. 8636
		given below: Wastewater generation		Stipulate	d value	Apr 19			
						Min.	Max	C. /	Avg.
		Wastewater generation m ³	/d	17283	17283 7848		9704 8		3636
inci	m³/d High COD effluent shall be inerated.	Complied. We have been is being taken							
inci		We have beer is being taken <2000 ppm is All the high C incineration. Phenolics, etc. is no High CO	for recordinally seed of the street of the s	very to go ent to ET ams are b containi en for the e water st	et econon P for trea being dive ng Amm recovery	nic benef tment. erted to r nonia, M of the sar	it. Rest led ecovery s ethanol, ne and re	on efflue ystem ro Copper, used. He	nt of CO other th Solver ence, the
97		We have beer is being taken <2000 ppm is All the high C incineration. Phenolics, etc.	for recordinally so OD streams are take D Waste ing this p	very to go ent to ET ams are k containi en for the water st period.	et econon P for trea peing dive ng Amm recovery tream ren S waste v	nic benef tment. erted to r nonia, M of the sar naining a	it. Rest led ecovery s ethanol, ne and re and therefo	an efflue ystem ro Copper, used. He ore no in	nt of CC ather th Solven ence, the cinerati
97	inerated. m³/d High TDS effluent shall be	We have beer is being taken <2000 ppm is All the high C incineration. Phenolics, etc. is no High CO was done dur Complied.	for recordinally so OD streams are take D Waste ing this p	very to go ent to ET ams are to containing en for the exwater st period.	et econon P for trea peing dive ng Amm recovery tream ren S waste v	nic benef tment. erted to r nonia, M of the sar naining a	it. Rest led ecovery s ethanol, ne and re and therefo	an efflue ystem ro Copper, used. He ore no in	nt of CC ather th Solven ence, the cinerati
97	inerated. m³/d High TDS effluent shall be	We have beer is being taken <2000 ppm is All the high C incineration. Phenolics, etc. is no High CO was done dur Complied. The average S break up is given.	for recordinally so OD streams are take D Waste ing this point of the cordinal form of the co	very to go ent to ET ams are to containing en for the exwater st period.	et econon P for trea peing dive ng Amm recovery tream ren S waste v	nic benef tment. erted to r nonia, Mo of the sar naining a	ecovery s ethanol, me and re and therefo	ystem ro Copper, used. He ore no in	nt of CC ather th Solven ence, the cinerati
97	inerated. m³/d High TDS effluent shall be	We have beer is being taken <2000 ppm is All the high C incineration. Phenolics, etc. is no High CO was done dur Complied. The average S break up is given High TDS effluent m³	for recordinally so OD streams are take D Waste ing this part of the Decording the Dec	very to go ent to ET ams are k containi en for the e water st period.	et econon P for trea peing dive ng Amm recovery tream ren S waste v	nic benefitment. erted to riconia, Moof the sarining a	ecovery s ethanol, me and re and therefore as evapore	ystem ro Copper, used. He ore no in	nt of CC ather th Solven ence, the cinerati
97	inerated. m³/d High TDS effluent shall be	We have beer is being taken <2000 ppm is All the high C incineration. Phenolics, etc. is no High CO was done dur Complied. The average S break up is given the management of	for recordinally sign of streams are taken of the sign	very to go ent to ET ams are k containing for the ewater stoeriod. Dec-18 2780 89.7	et econon P for trea peing dive ng Amm recovery tream ren S waste v E: Jan-19 2943 95.0	ric benefitment. Perted to renonia, Moof the sarmaining a water wa Feb-19 2533 90.5	ecovery sethanol, me and reand therefores evapore Mar-19 2974 95.9 given belove	ystem ro Copper, used. He ore no in ated in M Apr-19 2876 95.9	nt of CC ather th Solven ence, the cinerati
97	inerated. m³/d High TDS effluent shall be	We have beer is being taken <2000 ppm is All the high C incineration. Phenolics, etc. is no High CO was done dur Complied. The average S break up is given High TDS effluent m³ Month wise Per day	for recordinally sign of streams are taken of the sign	very to go ent to ET ams are k containing for the ewater stoeriod. Dec-18 2780 89.7	et econon P for trea peing dive ng Amm recovery tream ren S waste v 2: Jan-19 2943 95.0	ric benefitment. Perted to rationia, Major the saranaining and water was seen as 1 and 1 a	ecovery sethanol, me and reand therefores evapore Mar-19 2974 95.9 given belove	ystem ro Copper, used. He ore no in ated in M Apr-19 2876 95.9	nt of CC ather the Solven ence, the cinerati IEE. Det Total 16804 Avg.
97	inerated. m³/d High TDS effluent shall be	We have beer is being taken <2000 ppm is All the high C incineration. Phenolics, etc. is no High CO was done dur Complied. The average S break up is given High TDS effluent m³ Month wise Per day	for recordinally sign of streams are taken of the sign	very to go ent to ET ams are to contain in for the e water stoperiod. Dec-18 2780 89.7 um and a Values for the ent to ET ams are to ET ams	et econon P for trea peing dive ng Amm recovery tream ren S waste v :: Jan-19 2943 95.0 yerage vero or the perio	ric benefitment. Ferted to richard to richar	ecovery sethanol, me and reind therefores evapore Mar-19 2974 95.9 given belong the Rest 19	ystem ro Copper, used. He ore no in ated in M Apr-19 2876 95.9	nt of CC ather the Solven ence, the cinerati IEE. Det Total 16804 Avg.

effluent treatment plant.

The average **8636** m³/day wastewater was treated in the company's own

Recover Nov-18 Dec-18 Jan-19 Feb-19 Mar-19 Apr-19 Total Ammonio Nov-18 Nov-19 No		efflue	nt treat	ment pla	nt during	the repo	orting per	iod.		
Is being discharge into river parturough 4 km line constructed by M/s Atul.										
Final discharged effluent meeting all state pollution control board's libering discharged into river Par through 4 km line. Complied.		Comp	olied.							
Design discharged into river Par through 4 km line.		Final	dischar	aed efflu	ent mee	tina all	state pol	lution cor	ntrol boar	rd's lin
Ammonia bearing effluent streams generated from 4.4 DDS product recovered mixing with normal effluent stream.										
Ammonia bearing effluent streams generated from 4.4 DDS product recovered mixing with normal effluent stream. Ammonia bearing effluent streams generated from 4.4 DDS product recovered by stripping in series of packed column. The ammonia cont water from the stripper is condensed in condenser and recovered ammobeling recycled back in production of 4.4 DDS. Details are given in below being recycled back in production of 4.4 DDS. Details are given in below being recycled back in production of 4.4 DDS. Details are given in below being recycled back in production of 4.4 DDS. Details are given in below being recycled back in production of 4.4 DDS. Details are given in below being recycled back in production of 4.4 DDS. Details are given in below being recovered from effluent per one MT of 2.4 D product distillation column has been installed for phenol recovery. Resin tow installed to recover phenol. Data is given in below table: Nov-18	Ammonia hogring offluent shall be	Comp	liod							
Ammonio bearing effluent streams generated from 4.4 DDS product recovered by stripping in series of pocked column. The ammonio controvater from the stripper is condensed in condenser and recovered ammobile in condenser and recovered from effluent series in condenser and recovered ammobile in condense and recovered ammobile in condense and recovery ammobile in condense and recovery. Resin towards in condense and recovery ammobile in condense and recovery. Resin towards in condense and	subject to ammonia recovery before	Comp	лieu.							
Water from the stripper is condensed in condenser and recovered ammobeing recycled back in production of 4.4 DDS. Details are given in below Recover Ammonia Nov-18 Dec-18 Jan-19 Feb-19 Mar-19 Apr-19 Toto All Miles		Ammonia bearing effluent streams generated from 4,4 DDS production								
Recover Nov-18 Dec-18 Jan-19 Feb-19 Mar-19 Apr-19 Total Ammonia Apr-19										
Ammonia KL 456 442 518 314 398 352 248										
Ammonia KL 456 442 518 314 398 352 248		Boss		Nov. 10	Doc 19	lan 10	Ech 10	Mar 10	Apr 10	Total
Phenol will be recovered from phenol containing effluent. 20 Kgs phenol is recovered from effluent per one MT of 2.4 D product distillation column has been installed for phenol recovery. Resin town installed to recover phenol. Data is given in below table: Nov-18 Dec-18 Jan-19 Feb-19 Mar-19 Apr-19 Tot DCP crude 1339.5 1482 1276.8 1621.19 1681.5 1674.66 9078 1775 1300 1120 1402.5 1470.73 1469 793 1460 1274 123.668 19.097 645. 1621.19 1681.5 1674.66				1/07-19	Dec-10	Juli-19	Lep-19	Mui-19	Api-19	Total
20 Kgs phenol is recovered from effluent per one MT of 2.4 D product distillation column has been installed for phenol recovery. Resin town installed to recover phenol. Data is given in below table: Nov-18		KL		456	442	518	314	398	352	2480
20 Kgs phenol is recovered from effluent per one MT of 2.4 D product distillation column has been installed for phenol recovery. Resin town installed to recover phenol. Data is given in below table: Nov-18 Dec-18 Jan-19 Feb-19 Mar-19 Apr-19 Total State of the period of the perio	Dhanal will be massyoned from	C	امانا							
20 kgs phenol is recovered from effluent per one MT of 2,4 D product distillation column has been installed for phenol recovery. Resin tower installed to recover phenol. Data is given in below table: Nov-18		Comp	шеа.							
installed to recover phenol. Data is given in below table: Nov-18	,									
Nov-18 Dec-18 Jan-19 Feb-19 Mar-19 Apr-19 Tot									ry. Resin	towe
DCP crude distilled 1339.5 1482 1276.8 1621.19 1681.5 1674.66 9074 1175 1300 1120 1402.5 1470.73 1469 7932 1260 2.6DCP 89.3 98.8 87.07 27.49 123.868 119.097 645. 1260			ca to ic	·				w table.		
distilled 2,4DCP 1175 1300 1120 1402.5 1470.73 1469 793. 1260 2.6DCP 89.3 98.8 87.07 27.49 123.868 119.097 645. 645. 69.73 91.206 86.907 86.563 492. 69.73 91.206 86.907 86.563 492. 69.73										Toto
2,4DCP recovered 1175 1300 1120 1402.5 1470.73 1469 793.				1339.5	1482	1276.8	1621.19	1681.5	1674.66	9075
2.6DCP 89.3 98.8 87.07 27.49 123.868 119.097 645. OCP Residue 75.2 83.2 69.73 91.206 36.907 86.563 492. The treated effluent shall confirm the discharge norms.		2,4D	CP	1175	1300	1120	1402.5	1470.73	1469	7937
recovered OCP/ Residue 75.2 83.2 69.73 91.206 86.907 86.563 492.		recov 2.6D	/ered CP	89.3	98.8	87.07	27.49	123.868	119.097	645.6
Residue		recov	vered							
The treated effluent shall confirm the discharge norms. Complied.				/5.2	83.2	69./3	91.206	86.907	86.563	492.8
The treated effluent is meeting all the state pollution control board's disc norms and values of various parameters of treated effluent is given in 1. (Pl. see pg. no. 17) The maximum values during the compliance period confirms that at not the emission went beyond the stipulated standards. Summary is given be some the emission went beyond the stipulated standards. Summary is given be some the emission went beyond the stipulated standards. Summary is given be some the emission went beyond the stipulated standards. Summary is given be some the emission went beyond the stipulated standards. Summary is given be some the emission went beyond the stipulated standards. Summary is given be some the emission went beyond the stipulated standards. Summary is given be some the emission went beyond the stipulated standards. Summary is given be some the emission went beyond the stipulated standards. Summary is given be some the emission went beyond the stipulated standards. Summary is given be some the emission went beyond the stipulated standards. Summary is given be some the emission went beyond the stipulated standards. Summary is given be some the emission went beyond the stipulated standards. Summary is given be some the emission went beyond the standards. Summary is given be some the emission went beyond the emission went beyond the stipulated standards. Summary is given be some the emission went beyond the emission went beyond the standards. Summary is given be summary is given be some the emission went beyond the emission with the emission went beyond the emission with the emission went beyond the standards. Summary is given be summary in the summary is given be summary in the summary is given be summ		Comp	lied.	•	•	•				
norms and values of various parameters of treated effluent is given in 1. (Pl. see pg. no. 17) The maximum values during the compliance period confirms that at no the emission went beyond the stipulated standards. Summary is given by Values for the period Norms Sr. Parameter Norms Values for the period Norms Norm	the discharge norms.	The tr	ented e							
The maximum values during the compliance period confirms that at not the emission went beyond the stipulated standards. Summary is given by Morms Sr. Parameter Norms Values for the period Norms Min. Max. Avg.				ffluent is	The treated effluent is meeting all the state pollution control board's disch				al board's	disch
the emission went beyond the stipulated standards. Summary is given by Sr. No. Parameter No. Phase reprised Norms Nor										
No. 18 - Apr 19 Min. Max. Avg 1 pH 5.5-9.0 7.08 7.95 7.44 2 Temperature 40 deg C 30.1 32.6 31.0 3 Colour (pt. co. scale)in units 40 130 65.0 4 Suspended solids 100 mg/l 23 86 52.0 5 Phenolic Compounds 5 mg/l 0.28 0.75 0.48 6 Cyanides 0.2 mg/l ND ND ND 7 Fluorides 2 mg/l 0.32 1.2 0.60 8 Sulphides 2 mg/l 0.4 1.8 1.33 9 Ammonical Nitrogen 50 mg/l 32 48 39.6 10 Total Chromium 2 mg/l ND ND ND 11 Hexavalent Chromium 1 mg/l ND ND ND 12 BOD (3 days at 27°C) 100 mg/l 44 70 61.5		1 . (Pl.	s and vo see pg.	alues of \ . no. 17)	arious p	aramete	rs of trec	ited efflue	ent is give	en in T
Min. Max. Avg.		1 . (Pl. The m	s and vo see pg. naximur	alues of v . no. 17) m values	various p	aramete he comp	rs of trec	riod conf	ent is give	en in 1 at no
2 Temperature 40 deg C 30.1 32.6 31.0 3 Colour (pt. co. scale)in units 40 130 65.0 4 Suspended solids 100 mg/l 23 86 52.0 5 Phenolic Compounds 5 mg/l 0.28 0.75 0.48 6 Cyanides 0.2 mg/l ND ND ND 7 Fluorides 2 mg/l 0.32 1.2 0.60 8 Sulphides 2 mg/l 0.4 1.8 1.33 9 Ammonical Nitrogen 50 mg/l 32 48 39.6 10 Total Chromium 2 mg/l ND ND ND 11 Hexavalent Chromium 1 mg/l ND ND ND 12 BOD (3 days at 27°C) 100 mg/l 44 70 61.5		1. (Pl. The m the en	s and vo see pg. naximur mission	alues of v . no. 17) m values went bey	various p	aramete he comp stipulate	rs of trec liance pe d standa	riod conf rds. Sumi	ent is given irms that mary is gi for the pe	at no
3 Colour (pt. co. scale)in units 40 130 65.0 4 Suspended solids 100 mg/l 23 86 52.0 5 Phenolic Compounds 5 mg/l 0.28 0.75 0.48 6 Cyanides 0.2 mg/l ND ND ND 7 Fluorides 2 mg/l 0.32 1.2 0.60 8 Sulphides 2 mg/l 0.4 1.8 1.33 9 Ammonical Nitrogen 50 mg/l 32 48 39.6 10 Total Chromium 2 mg/l ND ND ND 11 Hexavalent Chromium 1 mg/l ND ND ND 12 BOD (3 days at 27°C) 100 mg/l 44 70 61.5		1. (Pl. The m the en	s and vo see pg. naximur mission	alues of v . no. 17) m values went bey	various p	aramete he comp stipulate	rs of trec liance pe d standa	riod conf rds. Sum Values 18 –Ap	ent is given irms that mary is gi for the pe or 19	at no
4 Suspended solids 100 mg/l 23 86 52.0 5 Phenolic Compounds 5 mg/l 0.28 0.75 0.48 6 Cyanides 0.2 mg/l ND ND ND 7 Fluorides 2 mg/l 0.32 1.2 0.60 8 Sulphides 2 mg/l 0.4 1.8 1.33 9 Ammonical Nitrogen 50 mg/l 32 48 39.6 10 Total Chromium 2 mg/l ND ND ND 11 Hexavalent Chromium 1 mg/l ND ND ND 12 BOD (3 days at 27°C) 100 mg/l 44 70 61.5		1. (Pl. The m the en Sr. No.	s and vo see pg. naximur mission Param	alues of v . no. 17) m values went bey	various p	aramete he comp stipulate N	rs of trec liance pe d standa orms	riod conf rds. Sumi Values 18 – Ap Min.	ent is given irms that mary is given for the perima for 19 Max.	at no ven be
5 Phenolic Compounds 5 mg/l 0.28 0.75 0.48 6 Cyanides 0.2 mg/l ND ND ND 7 Fluorides 2 mg/l 0.32 1.2 0.60 8 Sulphides 2 mg/l 0.4 1.8 1.33 9 Ammonical Nitrogen 50 mg/l 32 48 39.6 10 Total Chromium 2 mg/l ND ND ND 11 Hexavalent Chromium 1 mg/l ND ND ND 12 BOD (3 days at 27°C) 100 mg/l 44 70 61.5		1. (Pl. The m the en No.	s and vo see pg. naximur nission Param	alues of v . no. 17) m values went bey	various p	he comp stipulate N	rs of tred liance pe d standa orms	riod conf rds. Sum Values 18 – Ap Min. 7.08	irms that mary is given for the per 19 Max.	at no ven beriod No. Avg. 7.44
6 Cyanides 0.2 mg/l ND ND ND 7 Fluorides 2 mg/l 0.32 1.2 0.60 8 Sulphides 2 mg/l 0.4 1.8 1.33 9 Ammonical Nitrogen 50 mg/l 32 48 39.6 10 Total Chromium 2 mg/l ND ND ND 11 Hexavalent Chromium 1 mg/l ND ND ND 12 BOD (3 days at 27°C) 100 mg/l 44 70 61.5		1. (Pl. The m the en Sr. No.	s and vo see pg. naximur mission Param pH Tempe	alues of v . no. 17) m values went bey neter erature r (pt. co. so	various p during the vond the	he comp stipulate N 5.	rs of tred liance pe d standa orms 5-9.0 0 deg C	riod conf rds. Sum Values 18 – Ap Min. 7.08 30.1	irms that mary is given for the per 19 Max. 7.95 32.6 130	at no oven be riod No oven be
7 Fluorides 2 mg/l 0.32 1.2 0.60 8 Sulphides 2 mg/l 0.4 1.8 1.33 9 Ammonical Nitrogen 50 mg/l 32 48 39.6 10 Total Chromium 2 mg/l ND ND ND 11 Hexavalent Chromium 1 mg/l ND ND ND 12 BOD (3 days at 27°C) 100 mg/l 44 70 61.5		1. (Pl. The m the en Sr. No.	s and vo see pg. naximur mission Param pH Tempe Colour Suspe	alues of values of values went bey neter erature r (pt. co. so ended solice)	various p during the rond the	he comp stipulate N 5. 44 ts	rs of tred liance pe d standa orms 5-9.0 0 deg C	riod conf rds. Sumi Values 18 – Ap Min. 7.08 30.1 40 23	irms that mary is given for the peop 19 Max. 7.95 32.6 130 86	at no ven be riod Na Avg. 7.44 31.05 65.00
8 Sulphides 2 mg/l 0.4 1.8 1.33 9 Ammonical Nitrogen 50 mg/l 32 48 39.6 10 Total Chromium 2 mg/l ND ND ND 11 Hexavalent Chromium 1 mg/l ND ND ND 12 BOD (3 days at 27°C) 100 mg/l 44 70 61.5		1. (Pl. The m the en Sr. No.	s and vo see pg. naximur mission Param pH Tempe Colour Suspe	alues of values of values went bey neter erature r (pt. co. so ended solic Compo	various p during the rond the	he comp stipulate N 5. 44 ts	rs of tred liance pe d standa orms 5-9.0 0 deg C	riod conf rds. Sum Values 18 – Ap Min. 7.08 30.1 40 23	irms that mary is given for the per 19 Max. 7.95 32.6 130 86 0.75	at no ven be riod No 7.44 31.05 65.00 52.00 0.48
9 Ammonical Nitrogen 50 mg/l 32 48 39.6 10 Total Chromium 2 mg/l ND ND ND 11 Hexavalent Chromium 1 mg/l ND ND ND 12 BOD (3 days at 27°C) 100 mg/l 44 70 61.5		1. (Pl. The m the en Sr. No. 1 2 3 4 5 6	s and vo	alues of values of values of values went beywent beyweter erature r (pt. co. so ended solic Compodes	various p during the rond the	he comp stipulate N 5. 44 ts 10.	rs of treating rs of	riod conf rds. Sumi Values 18 - Ap Min. 7.08 30.1 40 23 0.28	irms that mary is gi for the pe or 19 Max. 7.95 32.6 130 86 0.75 ND	at no ven be riod No 7.44 31.05 65.00 0.48 ND
10 Total Chromium 2 mg/l ND ND ND 11 Hexavalent Chromium 1 mg/l ND ND ND 12 BOD (3 days at 27°C) 100 mg/l 44 70 61.5		1. (Pl. The m the en Sr. No. 1 2 3 4 5 6 7	s and vo see pg. naximur mission Paran pH Tempe Colour Suspe Pheno Cyanic	alues of values of values went bey neter erature r (pt. co. so ended solic Compodes des	various p during the rond the	he comp stipulate N 5. 44 ts 5 0. 2	rs of tred liance pe d standa orms 5-9.0 0 deg C 00 mg/l mg/l 2 mg/l	riod conf rds. Sum Values 18 – Ap Min. 7.08 30.1 40 23 0.28 ND 0.32	irms that mary is given for the per or 19 Max. 7.95 32.6 130 86 0.75 ND 1.2	at no iven be riod No iven be
11 Hexavalent Chromium 1 mg/l ND ND ND 12 BOD (3 days at 27°C) 100 mg/l 44 70 61.5		1. (Pl. The m the en Sr. No. 1 2 3 4 5 6 7	s and vo see pg. naximur mission Param Pharam Pharam Colour Suspe Pheno Cyanic Fluoric Sulphi	alues of values of values of values of values went beywent beymeter erature of the condense of the condense of the composition	during the	he comp stipulate N 5. 44 ts 10 2	rs of treating rs of	riod conf rds. Sumi Values 18 - Ap Min. 7.08 30.1 40 23 0.28 ND 0.32	irms that mary is gifor the peop 19 Max. 7.95 32.6 130 86 0.75 ND 1.2	at no ven be riod No 7.44 31.09 65.00 0.48 ND 0.60 1.33
12 BOD (3 days at 27°C) 100 mg/l 44 70 61.5		1. (Pl. The m the en Sr. No. 1 2 3 4 5 6 7 8 9	s and vo see pg. naximur mission Param pH Tempe Colour Suspe Pheno Cyanic Sulphi	alues of values of values of values of values went beywent beywerter erature r (pt. co. so ended solic Compodes des des ides	during the conditions of the c	he comp stipulate N 5. 44 ts 5. 0. 2	rs of treated as tanda orms 5-9.0 0 deg C 00 mg/l mg/l mg/l mg/l 0 mg/l	riod conf rds. Sumi Values 18 - Ap Min. 7.08 30.1 40 23 0.28 ND 0.32 0.4	irms that mary is given for the per 19 Max. 7.95 32.6 130 86 0.75 ND 1.2 1.8 48	at no ven be riod No Avg. 7.44 31.05 65.00 52.00 0.48 ND 0.60 1.33 39.67
		1. (Pl. The m the en Sr. No. 1 2 3 4 5 6 7 8 9 10	s and vo	alues of values of values of values of values of values went beywent beywent of values. The value of values of value	during the	he comp stipulate N 5 4 ts 5 0 2 5 2	rs of treating rs of	riod conf rds. Sumi Values 18 - Ap Min. 7.08 30.1 40 23 0.28 ND 0.32 0.4 32 ND	irms that mary is given for the peop 19 Max. 7.95 32.6 130 86 0.75 ND 1.2 1.8 48	at no ven be riod No 7.44 31.05 65.00 0.48 ND 0.60 1.33 39.67
13 COD 250 mg/l 202 232 216.		1. (Pl. The m the en Sr. No. 1 2 3 4 5 6 7 8 9 10 11	s and vo see pg. naximur mission Param pH Tempe Colour Suspe Pheno Cyanic Fluoric Sulphi Ammo	alues of values of values of values of values of values went beywent beywent of values. The value of values of value	various p during the value on the value of the value on the value of value on the value of value on the value of value on the value on the value on the value of value on the value on the value of value of value on the value of value	he comp stipulate N 5 4 ts 1 5 0 2 2 5 1	rs of treconstructions of treconstructions of treconstructions or the construction of	riod conf rds. Sumi Values 18 – Ap Min. 7.08 30.1 40 23 0.28 ND 0.32 0.4 32 ND	irms that mary is given for the per or 19 Max. 7.95 32.6 130 86 0.75 ND 1.2 1.8 48 ND ND	at no oven be riod No 7.44 31.05 65.00 0.48 ND 0.60 1.33 39.67 ND ND

	The domestic effluent shall be disposed off through septic tank / soak pit. Complied. Domestic effluent goes to septic tank / soak pit and Detail of Domestic effluent generation is given in below								to ETP.
		Domestic Wastewater generation m ³	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	Total
		Month wise	11100	10832	10493	10283	12276	11856	66840
		Per day	370	349	338	367	396	395	Avg. 369
		The maximum, n Domestic Waste generation	water	Values for	the period	Nov-18		w:	
		Domestic Waste		Min. 338	Ma 39		Avg. 369		
ii	The process emissions (SO ₂ , NH ₃ ,	generation m³/d							
	Cl ₂ , and HCl, shall be scrubbed with Scrubbers. The emission shall be dispersed	Cl ₂ , and HCl, shall be scrubbed with Scrubbers. All the SO ₂ , NH ₃ , Cl ₂ , and HCl vents are being routed through ade properly designed scrubbing system. Furthermore, most of the properly designed scrubbing system on the property designed scrubbing system. Furthermore, most of the property designed scrubbing system. Furthermore, most of the property designed scrubbing system.					the proc	ess and	
	through stack of adequate height as per CPCB standard.							ove grou Table 2	nd. . (Pl. see
	The gaseous emission from the DG sets shall be dispersed through stack of adequate height as per CPCB standards.	Complied. The gaseous emission from the DG sets is being dispersed through stack adequate height as per CPCB standards given below: The minimum height of stack is provided using the following formula (re CPCB): H = h+0.2x√KVA H =Total height of stack in meter h =Height of the building in meters where the generator set is installed KVA = Total generator capacity of the set in KVA							ula (ref.
	Acoustic enclosures shall be provided to the DG set to control the noise pollution.	Complied. All DG sets are hand meeting the	aving inb	uilt acous	stic enclos				oollution
iii	The company shall upload the status of compliance of stipulated environmental clearance conditions including results of monitored data on its web site.	ce Complied. d The status of compliance of stipulated environmental clearance cor					t can be		
	Status of compliance of stipulated environmental clearance conditions to be sent to Regional office of	Compliance sto	ıtus rep	ort to t	he stipu	ılated e	environm	ental cl	earance

MoEF, the respective Zonal office of CPCB and the state pollution control board.

conditions are regularly submitted to the regional office of MoEF, zonal office of CPCB and state pollution control board.

The criteria pollutant levels namely; SPM, RSPM, SO2, NOx (ambient levels as well as Stack emissions) or critical sectorial parameters like VOC, indicated for the project shall be monitored and displayed at a convenient location near the main gate of company in the public domain.

Complied.

The critical pollutants parameters namely; SPM, RSPM, SO_2 , NOx are monitored regularly on monthly basis and displayed at board at the company entrance.

Details of stack results, ambient air monitoring and VOC measured in fugitive emission is given in **Table 2, 3 and 4** respectively. (Pl. see pg. no. 18,22,23)

The maximum values during the compliance period confirms that at no time the emission level went beyond the stipulated standards. Parameter wise summary is given below:

Summary of Process Stack results:

No.	Parameter	Standard values as	Unit	Values for the period Nov18 – Apr19			
		per CCA		Min.	Max.	Avg.	
1	SO ₂	40	mg/Nm³	3.8	17.8	8.97	
2	SO ₂ (kg/T)	2	kg/T	0.5	1.7	0.977	
3	NOx	25	mg/Nm ³	10.5	13.5	10.98	
4	HCI	20	mg/Nm ³	4.1	9.9	6.11	
5	PM	150	mg/Nm ³	8.5	85	45.18	
6	PM with Pesticide compound	20	mg/Nm ³	4.2	9.5	7.0	

Summary of Flue Stack results:

No.	Parameter	Standard values as	Unit	Values fo Apr19	od Nov18 –	
		per CCA		Min.	Max.	Avg.
1	PM	100	mg/Nm ³	50	80	61.83
2	PM (New Boiler)	50	mg/Nm ³	35	49	41.5
3	SO ₂	600	mg/Nm ³	75	128	96.41
4	NOx	600	mg/Nm ³	105	145	120.09
5	NOx (NewBoiler)	300	mg/Nm ³	71	95	79.67

Summary of Ambient Air Quality results:

Station	Parameter	Limit microgm/N M ³	Values for the period Nov18 –Apr19			
		IVI	Min.	Max.	Avg.	
66 KV	RSPM (PM2.5)	60	27	40	31.83	
	PM10	100	31.1	50	35.97	
	SO2	80	7.3	9.2	8.17	
	NOx	80	6.8	8.9	8.05	
	Ammonia	850	ND	9	1.5	
	HCI	200	ND	ND	ND	
Opposite Shed D	RSPM (PM2.5)	60	29	45	36.83	
Siled D	PM10	100	35	50	42.00	
	SO2	80	9.4	12.1	10.35	
	NOx	80	8.7	10.1	9.22	

		1.050			т —
	Ammonia	850	ND	ND	ND
	HCI	200	ND	ND	ND
Near West site	RSPM (PM2.5)	60	28	35	30.83
	PM10	100	39	50	44.00
	SO2	80	8.5	10.1	9.07
	NOx	80	8.5	9.5	8.82
	Ammonia	850	ND	ND	ND
	HCI	200	ND	ND	ND
Near North ETP	RSPM (PM2.5)	60	26	38	31.17
	PM10	100	38	60	44.00
	SO2	80	9.5	10.4	10.10
	NOx	80	9.1	9.8	9.48
	Ammonia	850	ND	ND	ND
	HCI	200	ND	ND	ND
TSDF	RSPM (PM2.5)	60	33	55	42.33
	PM10	100	33	55	42.83
	SO2	80	8.4	9.9	9.08
	NOx	80	7.9	9.1	8.45
	Ammonia	850	ND	ND	ND
	HCI	200	ND	ND	ND
Main Guest	RSPM (PM2.5)	60	27	35	29.17
House	PM10	100	39	50	43.17
	SO2	80	9.5	10.1	9.83
	NOx	80	13.4	16.5	14.57
	Ammonia	850	ND	ND	ND
	HCI	200	ND	ND	ND
Wyeth Colony	RSPM (PM2.5)	60	24	30	26.67
	PM10	100	39	46	43.33
	SO2	80	7.5	9.3	8.33
	NOx	80	11.8	13.5	12.45
	Ammonia	850	ND	ND	ND
	HCI	200	ND	ND	ND
Gram panchayat		60	32	40	35.17
hall	PM10	100	35	45	40.17
	SO2	80	8.3	9.3	8.85
	NOx	80	12.5	13.2	12.83
	Ammonia	850	ND	ND ND	ND
	HCI	200	-		
Main office,	RSPM (PM2.5)	60	ND 25	ND 30	ND 26.83
North site	PM10	100			
	1 141 7 0	100	44	55	49.00
	SO2	80	0.7	0.2	0.00
	SO2	80	8.7	9.2	8.93
	NOx	80	12.6	13.2	12.87
			+		-

Haria water tank	RSPM (PM2.5)	60	27	36	31.33
	PM10	100	31.3	40.5	34.87
	SO2	80	7.4	8.5	7.83
	NOx	80	7.9	9.5	8.48
	Ammonia	850	ND	ND	ND
	HCI	200	ND	ND	ND

Summary of VOC results:

Plant	Area	Parameter	Prescribed Limit	Values of VOCs in Milligram per NM³ for the period Nov18 – Apr19			
				Min.	Max.	Avg.	
2,4 D	Reactor	Phenol	19	9.2	14.1	12.0	
	Buffer tank	Chlorine	3	0.8	2.1	1.3	
Resorcinol	Benzene storage tank area near vent	Benzene	15	5.4	14.0	9.4	
	Near Extraction/scr ubber unit	Butyl acetate	-	1.6	10.8	5.9	
Pharma	At second floor work area	Ammonia	18	9.9	14.6	11.7	
	Ammonia recovery area	Ammonia	18	3.1	12.2	7.4	
Epoxy - I	At vacuum pump 2nd floor	ECH	10	2.6	5.4	3.6	
	At vessel POS 1208 G.F	ECH	10	3.1	6.2	5.0	
Shed H	At second floor work area	Nitrobenzene	5	1.3	4.4	2.8	
Shed J	Buffer Tank	Chlorine	3	1.1	2.6	1.9	

iv The company shall adopt cleaner production technology to minimize the quantity of fresh water requirement and process effluent generation.

Complied.

Company is fully devoted towards protection of environment and has successfully completed many cleaner production projects and will continuously improve further.

We have already converted few of our plants as ZLD and are in process of converting many other plants as ZLD. Our Ankleshwar unit is completely ZLD unit.

Treated wastewater is being used in lime preparation at ETP, steam condensate is being collected and used in place of raw water, vacuum pump, gland cooling and other water is being collected and reused. Vacuum pumps are removed by installing centrifuge in place of neutch filter and water consumption is reduced.

Cooling tower blow down water is used as fire hydrant make up and also used for dust suppression and fly ash quenching instead of fresh water.

Water used for washing purpose is reused.

Details of water consumption break up is given below:

		Dotails of	ator consum	tion		
			ater consump umption Break			
		Period	Water cons	•		Total
		Period	Process	Cooling	Domestic	
		Nov-18	215379	50812	13875	280066
		Dec-18	208438	49005	13540	270983
		Jan-19	203615	47698	13116	264429
		Feb-19	199383	46832	12854	259069
		Mar-19	252581	58936	15345	326862
		Apr-19	228895	54718	14821	298434
V	The company shall obtain Authorization for Collection; Storage and Disposal of Hazardous waste under the hazardous waste management (Handling and trans boundary movement rule-2008) for management of hazardous waste and prior permission from GPCB shall be obtained for disposal of solid waste in the TSDF.	no. GPCB/H 65621 dated CCA No. AW Copy of t	AZ/GEN-55/9 d 19/11/2014 /H-67717 for	647 dated 3 Also we hav handling, sto was submi	13 th March 20 e valid authori: rage and dispo	rough GPCB notification 00 and NOC no. CTE- zation under our current sal of hazardous waste. stry vide our letter
	undertake measures for the firefighting facility in case of emergency.	and trained supply from	staff, emerge two source w and detailed	ncy response ith emergend	e team(ERT) of cy backup powe	equate hydrant system trained workers, power er provision from DG set ck drills are also carried
vi	The project authorities shall strictly comply with the rules and guidelines under manufacturing, storage and import of hazardous chemicals rule 1989 as amended in October, 1994 and January, 2000.	in October, 1 system, Ons The compan are being Environment	994 and Januite emergency y complies wi	uary, 2000 ar y plan, Licens th all stipulat atest comp culty of Pacif	nd having proposes, reporting, ed norms of ac liance report ic school of Eng	rule 1989 as amended er storage and handling etc. t made in CCA by GPCB by GPCB appointed gineering, Dist. Surat for
	All Transportation of Hazardous chemicals shall be as per the MVA, 1989.	1989. TREN	Л (Transport			one as per the MVA rule SDS of chemicals are
vii	The company shall undertake waste minimization measures: Metering and control of quantities of active ingredients to minimize waste.	provided to transporter. Complied. All the liquid ingredients are being charged through measure vessels and/or flow meters to control on quantity as per the stoichiometry. All the solid ingredients are charged after proper weighment only. All these meters and weighing machines are calibrated and records are maintained.				

	Reuse of by products from the process as raw materials or as raw material substitutes in other processes.	Complied. Sodium Sulfate, Sodium Thio Sulphate, Brine, MEE salt, Sodium hypochlorite, Copper Hydroxide, spent acid, etc. are few by-products from the process which are being sold for using the same either as raw material or as substitute to raw materials. Also, fly ash and Gypsum are being used as raw material for Brick Manufacturing. Sodium Hypochlorite, Sodium hydro sulfide, etc. are being used as raw material in other processes.
	Use of automated filling to minimize spillage.	Complied. Automated filling system for our agro products, polymers, resorcinol, dyes for small and bulk packing is provided to minimize spillage.
	Use of 'close feed' system into batch system.	Complied. Chemicals and solvents are handled in close handling system through pipe lines only.
	Venting equipment through vapor recovery system.	Complied. All the reactors are equipped with vents/stacks, which are connected to either vapor recovery system consisting of condensers, ejector/vacuum pumps and/or scrubbers. Genosorb technology for solvent vapor recovery is also installed and working perfectly.
	Use of high pressure hoses for equipment cleaning to reduce wastewater generation.	Complied. Many equipment like reactors, spray dryers, condenser wherever necessary are being cleaned with high pressure sparger / jet to reduce waste water generation.
Viii	Fugitive emissions in the work zone environment, product, raw material storage area shall be regularly monitored. The emission shall conform to the limits imposed by I.	Fugitive emissions in the work zone environment and raw material storage area is being regularly monitored by NABL approved third party. Data for the reporting period is given in Table 4 (Pl. see pg. no.23). Besides this online monitors in work area for parameters like Chlorine, HCl, Phosgene are also installed. The maximum values during the compliance period confirms that at no time the emission level went beyond the stipulated standards. Summary is given in specific condition iii.
ix	The project authority shall provide chilled brine solution in secondary condenser for condensation of the VOCs.	Complied. All the VOCs/solvent recovery systems are attached with chilled brine solution in secondary condenser for condensation of VOCs.
	The project authority shall ensure that solvent recovery shall not be less than 95%	Complied. On an average solvent recovery is 96%.
	The VOC monitoring shall be carried in the solvent storage area and data submitted to the Ministry.	Complied: We are monitoring VOC as well as other chemicals in work area as per Factories Act and records are being maintained in Form No. 37. VOC monitoring in solvent storage area is being done and data are submitted through EC compliance report. Data for the report period is given in Table 4. (Pl. see pg. no.23)
x	Solvent management shall be as follows: Reactor shall be connected to chilled brine condenser system.	Complied. All the reactors handling solvent are connected/attached with chilled brine condenser for solvent recovery.
	Reactor and solvent handling pump shall have mechanical seals to prevent leakages. The condensers shall be provided	Complied. All the reactors and pumps handling solvent are equipped with mechanical seals to prevent leakages. Complied.

	with sufficient HTA and residence	The cond	ensers provided are prope	rly designed with respect to HTA and								
	time so as to achieve more than			n 95 % recovery. As mentioned above,								
	95% recovery. Solvents shall be stored in a	Complied	96 % solvent recovery is bei	ng achieved.								
	separate space specified with all	Solvents are stored in tank farms in separate tanks with proper earthing										
	safety measures.			rs, fencing, Fire hydrant system, Fire								
	,		extinguishers, flame proof equipment, etc. safety measures.									
	Proper earthing shall be provided in	Complied.										
	all the electrical equipment		0 ,	ular checking and testing of the same is								
	wherever solvent handling is done.	Complied	being done and recorded.									
	Entire plant shall be flame proof.			lame proof electrical fittings and proper								
			as per the Hazardous area o									
	The solvent storage tanks shall be	Complied	•									
	provided with breather valve to		•	ed to all the solvent storage tanks to								
	prevent loses.	minimize										
xi	Hazardous chemicals shall be	Complied		aloued to tend of the control of the con-								
	stored in tanks in tank farms, drums, carboys etc.		is chemicals are being s ng the storage quantity and	stored in tanks, drums and carboys								
	Company shall develop an area of	Complied		chemical storea.								
	33% green belt and selection of			and dense plantation inside and outside								
	plant species shall be as per the			tal land. Company is having green belt								
	guideline of CPCB.			e than about 50000 plants per year on								
		regular bo	asis.									
xii	The company shall harvest surface	Complied										
	as well as rain water from the roof		1 120 1 20									
	tops of the building and storm water drain to recharge the ground water		•	ng pond capacity to 9000 KL capacity								
	and use the same water for the	ропа со п	arvest rain water									
	various activities of the project to	We are	creating facility/ capacity	to cater our consumption with rain								
	conserve fresh water.	harvested	d water with zero river dr	zero river drawls of water during the rainy days.								
			Besides this, there are three check dams and pumping facility to harvest rain									
		water.										
		We also construct temporary sand bag dam on top of dam towards the end										
				owing rain water in river Par.								
		In addition to above, surface runoff water and roof top water is used to										
xiii	Occupational health surveillance of	recharge Complied	bore wells.									
XIII	the workers shall be done on a	Complied										
	regular basis and records	Occupation	onal health surveillance of th	ne workers is being done on regular basis								
	maintained as per the Factories Act.			tory act which is shown in below table:								
		Sr. No.	Month of Examination	Total No. of Employees								
		1	Quarter 3	571								
		2	Quarter 4	579								
			I									
B. Gene	eral Conditions:											
i	The project authorities shall strictly	Complied										
	adhere to the stipulations made by											
	the State Pollution Control Board.			npliances and has not exceeded the								
				d by our Environmental auditors, an by GPCB; through Environmental audit								
		every yea		5, 5. 55, through Environmental addit								
				ppointed Environmental auditor Faculty								
				st. Surat for year 18-19 is attached as								
ii	No further expansion or	Annexure Complied										
"	140 Iditilei expulision of	Complied	•	Page 9 of 24								

modification in the plant carried out without prior app the Ministry of Environme Forests. In case of deviations or altered the project proposal from submitted to this Ministry clearance, a fresh reference made to the Ministry to assequency of conditions in and to add additional environ protection measures requires iii At no time, the emission exceed the prescribed limits.	Any e ent and ations in those stry for shall be sess the emposed enmental ed, if any. The shall components of the compo	xpansion will be done only after getting EC. lied. ly monitoring is being done by NABL approved third time, the emissions exceeded the prescribed limits do	
	Summ	nary of stack results given in specific condition no. iii.	
In the event of failure	of any Comp	lied.	
pollution control system add the units, the unit sl immediately put out of o and shall not be restarted desired efficiency has achieved.	ppted by No su peration of fail	ch case happened during compliance period. Wher ure of pollution control system happened, we will stop the problem and then only restart.	
iv The Gaseous emission (No		lied.	
SO2 and SPM) and Pa matter along with RSPM lev various process units shall	els from The g	aseous emissions (SO ₂ , NOx, and HCI) and particular process units confirms to the standards prescribed	
to the standards prescribed			·
concerned authorities from time.	pg. no	s of stack results for the compliance period is given (18)	in Table 2. (Pl. see
At no time, the emission lev	els shall Comp		
go beyond the stipulated sta	We w maxin emiss	rill ensure that at no time emission will go beyond to num values during the compliance period confirms to ion level went beyond the stipulated standards.	
In the event of failure of		nary of stack results given in specific condition no. ii.	
control system(s) adopted	·	iicu.	
unit, the respective unit sha	Il not be No su	ch case happened during compliance period. Stack i	
restricted until the control mare rectified to achieve the		and SPM has been carried out and details given in T 8) Whenever such incident of failure of pollutic	
efficiency. Stack monitoring	for SO ₂ , happe	ened, we will stop the operation and rectify the prob	
NOx and SPM shall be carrie			
v The Location of ambient ai monitoring stations shall be		ileu.	
in consultation with state	oollution The Lo	ocation of ambient air quality monitoring stations ha	
control Board and it shall be that at least one station is		Itation with GPCB so that at least one station is insto downwind direction as well as where maxim	-
in the up wind and do	wnwind conce	ntration are anticipated. The same had been show	
direction as well as		, CPCB & MoEF during their visit to our factory.	
maximum ground concentration are anticipate	level List of	our ambient air monitoring station is given below:	
	No.	Location	
	1	66 KVA GEB substation	
	3	Opposite Shed D Near ETP (West Site)	
	4	ETP Plat (North site)	

		5	Near TSDF						
		6	Near Main Guest House						
		7	At Wyeth Colony						
		8	Gram panchayat hall						
		9	Near Main office, North site						
		10	Water tank at Haria Road						
		Details	of ambient air quality results is given in Table 3 . (P	l. see pg. no. 22)					
vi	Dedicated Scrubbers and stacks of	Compli	ed.						
	appropriate height as per the								
	central pollution control board	Dedica	ted Scrubbers with stacks of appropriate height	(as per the central					
	guideline shall be provided to	pollutio	on control board guideline) have been provided to c	ontrol the emission					
	control the emission from various	from vo	arious vents. Details of stack results along with its h	neight data is given					
	vents.	in Tabl	e 2 . (Pl. see pg. no. 18)						
	The scrubber water shall be sent to	Compli	ed.						
	ETP for further treatment or sell to	_							
	actual end users.	The scr	rubber water is being sent to ETP for further treatm	ent.					
vii	The overall noise level in and around	Compli	ed.						
	the plant area shall be kept well								
	within the standard by providing	In built	Acoustic enclosure, silencer and insulation are pro	vided on all source					
	noise control measures including	'							
	acoustic hoods silencers, enclosures		bine, DG set, etc.						
	etc. on all source of noise								
	generation.								

The ambient noise level shall Complied. confirm to the standards prescribed under Environment (Protection) Act-The ambient noise level confirm to the standard prescribed under EPA. The 1986 Rules,1989 viz 75 dBA (day same is being regularly monitored and its details are given in **Table 5 and 6**. time) and 70 dBA (night time) (Pl. see pg. no. 24) The maximum values during the compliance period confirms that at no time the noise emission level went beyond the stipulated standards. Summary is Noise level monitoring data (Day Time) Sr. Location Permissible Values for the period Limits, dBA Nov18- Apr19 No. 75 Min. Max. Avg. 1 Near Main guest house 75 63.6 68.9 65.3 2 Near TSDF 75 63.2 66.2 64.1 60.4 3 At Wyeth Colony 75 66.8 64.1 4 Gram Panchayat Hall 75 61.3 69.5 63.8 5 Near Main Office North site 75 67.9 65.5 66.7 6 ETP North site 75 66.5 70.2 68.0 68.9 7 Opposite shed D 75 64.7 66.3 8 ETP West site 75 65.4 68.7 67.2 75 9 Water tank Haria road 62.5 64.9 63.7 10 Near 66KVA substation 75 64.3 67.8 65.9 Noise level monitoring data (Night Time) Permissible Values for the period Sr. Location No. Limits, dBA Nov18- Apr19 70 Min. Max. Avg. 1 Near Main guest house 70 53.1 56.1 55.0 Near TSDF 70 2 564 603 583 3 At Wyeth Colony 70 50.5 52.5 51.7 4 Gram Panchayat Hall 70 52.1 55.1 53.7 5 Near Main Office North site 70 55.7 58.9 57.3 6 ETP North site 70 52.2 55.1 53.6 7 Opposite shed D 70 53.8 55.9 54.8 8 ETP West site 70 54.7 56.3 55.6 9 Water tank Haria road 70 53.4 55.8 54.7 Near 66KVA substation 10 70 51.7 56.2 53.9 viii Training shall be imparted to all Complied. employees on safety and health aspects of chemicals handling. Company is imparting training to all new employees as well as regular employees at regular intervals on safety and health aspects of chemicals handling. Safety precautions and hazards are also being communicated through display boards at appropriate places in the plants. Pre-employment and routine Complied. periodical medical examination for all employees shall be undertaken Pre medical checkup and routine medical checkup for the employees is being on regular basis. done on regular basis (Six monthly). Data are submitted in below table:

		Summary of medical checkup given in specific condition no. xiii.
ix	Usage of PPE's by employee/ workers shall be ensured.	Complied.
		Company have PPE policy in place and is strictly followed. Company is providing adequate PPEs to all the employees.
X	The project proponent shall also comply with all the environmental protection measures and safeguards proposed in project report submitted to the ministry. All the recommendation made in respect of environmental management and risk mitigation measures relating to the project shall be implemented.	Company has complied with all the environmental protection measures and safeguards proposed in the report apart from the recommendations made their in. Since ToR didn't suggest for EIA or public hearing, no such recommendations mentioned. However, we are committed for healthy work environment and safe work practices. However, Compliance to the recommendation made in respect of adequacy report for the referred project is given below: No. Recommendation
xi	The company will undertake all relevant measures for improving the socio economic condition for the surrounding area, CSR activities will be undertaken by involving local villages and administration:	Complied. Company is doing CSR activities through its Atul Rural Development Fund trust and is specially designed for up gradation of surrounding area and well fare of nearby localities. List of CSR activities carried out during 18-19 is given below table:
		No. CSR activities during 18-19 1 11 eye camp, 27 blood donation camps and 3 Yoga camps done,
		beneficiaries were 5,619. 2 1500 toilets made.
		 Distribution of relief kits to Kerala flood victims Construction of paver block roads in 2 villages, Valsad
		5 Recharging of ponds in 3 villages, Valsad

	T	Drovido a	oistanas to 12E	familias to purchase 12E serve	
				families to purchase 125 cows	
		7 Distribute	125 sewing ma	chines to 125 disadvantaged w	vomen
		8 Provide 1	25 science kits to	o 125 schools	
		below:	·	urred in CSR activities for	
		Budget for Find 19 (Rs. in lakhs)	ıncial year 18-	Actual Expense during year 19 (Rs. in lakhs)	18-
		790		789.9	
xii	The company shall undertake eco developmental measures including community welfare measures in the project area for the overall improvement of the environment.	Complied as me	ntioned in xi al	oove.	
xiii	A Separate environmental management cell equipped with full	Complied.			
	flagged laboratory facility shall be	Company is havi	na senarate F	nvironmental Management	Cell equipped with
	set up to carry out the			o carry out the environment	
	environmental management and			m this, one Environment Re	
	monitoring function.			for the study of various of	
				neasures. Organogram of E	
				ed vide our letter Atul/SHE/ eveloped a separate labora	
				r, TDS meter, COD meter,	
				oven, muffle furnace, etc. to	
				sampling and testing is car	
				nted consultant also. Curren	tly the parameters
		measured in-hou	ise are pH, CC	D, TDS, MLVSS, and MLSS.	
xiv	The project authorities shall	Complied.			
	earmark adequate funds to	5.45			
	implement the conditions stipulated by the Ministry of Environment and	EMP measures of at place.	re implemente	d by 2010 and many things	have already been
	Forest as well as the State	Non recurring co	st Rs 50 Cr		
	Government along with the			dget is being allocated eve	ery year to comply
	implementation schedule for all the	with all the lega	requirement s	stipulated by SPCB, CPCB 8	& MoEF apart from
	conditions stipulated herein. The			stems and facilities. Total e	expenditure for the
	funds so provided shall not be diverted for any other purposes.	report period is g		table.	
	diverted for any other purposes.	months	Particular		Expenses Rs.
			Fuel		2489262
		. 101 ±0 / 10.	Chemicals(R Electricity		194312779 23083536
		Including, recurri maintenance,	Waste dispo		20301875
		maintenance, modifications a			13430602
		monitoring.			27370856
			Monitoring		1966640
			Total		282955550
15:	A compact the element of letter of the	Compeliad			
xv	A copy of the clearance letter shall be sent by the proponent to	Complied.	n to the Dana	hayat, Zila parishad, Distric	t Industrial Contro
	concerned Panchayat, Zila			indyat, ziid parishda, Distric i. Copy of the same was sul	
	parishad/Municipal Corporation.			/isit/3 dated 4.4.17.	y
	Urban local body and the local NGO,				
	if any, from who				
	suggestions/representation, if any,				
	were received while processing the proposal.				
	TOTOGOSCII.	ı			

	The clearance letter shall also be put on the web site of the company by the proponent.	Complied. Available at company's website at http://www.atul.co.in/sustainability/pdf/Atul-Environmental-Clearance-forexpansion-2009.pdf
xvi	The implementation of the project vis-à-vis environmental action plan shall be monitored by Ministry's Regional office at Bhopal / SPCB / CPCB.	Complied. SPCB and MoEF is monitoring through their regular visits.
xvii	The Project Proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB/Committee and may also be seen at website of the Ministry of Environment and Forest at http://www.envfor.ni.in .	Complied. We informed the public through advertisement and by sending our EC to local Panchayat, Zila parishad, District Industrial Centre for further actions at their end.
	This shall be advertised within seven days from the date of issue of the clearance letter at least in two local newspaper that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same shall be forwarded to the concerned Ministry's Regional office at Bhopal.	Complied. Advertisement was published as directed and copy of the same was submitted to Ministry vide our letter dated 14.11.2009.
xviii	The project authorities shall inform the Regional Office as well as the Ministry, the date of financial closures and final approval of the project by the concerned authorities and the date of start of the project.	Complied. Start date : May 2009 Completion date: May 2010 Final approval: We have obtained NOC and CCA from GPCB. Company has funded the project internally and hence not submitted the financial closure details.
8	The Ministry may revoke or suspend the clearance if implementation of any of the above conditions is not satisfactory.	Noted.
9	The Ministry reserves the right to stipulate additional conditions, if found necessary. The company in a time bound manner will implement these conditions.	Noted and will be complied.
10	Any appeal against this Environment clearance shall lie with the national appellate authority, if preferred, within a period of 30 days as prescribed under section 11 of National Environment Appellate Authority Act, 1997.	Noted.
11	The above conditions will be enforced, inter-alia under the provisions of the Water (Prevention and Control of Pollution) Act, 1974 the Air ((Prevention and Control of Pollution) Act, 1981 the Environment (Protection) Act, 1986, Hazardous Wastes (Management,	Noted.

Handling and Transbo movement) Rules, 2008 an	•
Public Liability Insurance Act	1991
along with their amendment	s and
rules.	

Table 1 : Quality of treated effluent

Sr. No.	Parameter			Res	sults			GPCB Limits
		Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	
1	рН	7.08	7.25	7.4	7.48	7.95	7.45	5.5 to 9.0
2	Temperature °C	30.2	30.8	30.1	30.7	32.6	31.9	40 °C
3	Colour (pt. co. scale)in units	50	50	40	50	70	130	
4	Suspended solids, mg/l	38	54	36	23	75	86	100
5	Phenolic Compounds, mg/l	0.28	0.35	0.46	0.56	0.75	0.45	5
6	Cyanides, mg/l	ND	ND	ND	ND	ND	ND	0.2
7	Fluorides, mg/l	0.55	0.45	0.32	0.45	0.65	1.2	2
8	Sulphides, mg/l	0.4	1.2	1.8	1.2	1.8	1.6	2
9	Ammonical Nitrogen, mg/l	42	48	40	36	32	40	50
10	Total Chromium, mg/l	ND	ND	ND	ND	ND	ND	2
11	Hexavelent Chromium, mg/l	ND	ND	ND	ND	ND	ND	1
12	BOD (3 days at 27°C), mg/l	44	58	68	64	70	65	100
13	COD, mg/l	210	232	226	202	220	210	250
Note	: ND is Not Detectable.		•		•			•

st Site Phosgene Plant (Old Plant) Chlorine Plant Dechlorination Plant	Paramenter Phosgene	Permissible Limits 0.1 ppm	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value
Phosgene Plant (Old Plant) Chlorine Plant	Phosgene	0.1 ppm							_					
Chlorine Plant	Phosgene	0.1 ppm												
	_		-	Not in use	-	Not in use	-	Not in use	-	Not in use	-	Not in use	-	Not in use
Dechlorination Plant														
	Cl ₂	9.0 mg/Nm3	1.11.18	2.7	27.12.18	2.5	19.1.19	2.6	21.2.19	2.8	28.3.19	2.7	5.4.19	3.2
	HCI	20.0 mg/Nm3	1	4.9	1	4.5		4.1		4.3		4.1	-	4.8
Common stack of HCI Sigri unit	Cl ₂	9.0 mg/Nm3	1.11.18	5.4	27.12.18	5.7	19.1.19	5.8	21.2.19	6.2	28.3.19	5.5	5.4.19	6.5
1&2	HCI	20.0 mg/Nm3	1	5.6	1	5.1	1	5.5		5.6		6.1	1	6.8
Int	1													
Foul Gas Scubber	SO ₂	40.0 mg/Nm3		Not in use		Not in use		Not in use		Not in use		Not in use		Not in use
	NOx	25.0 mg/Nm3	1											
Acid (East Site)														
	SO ₂	2.0 kg/T	1.11.18	0.5	21.12.18	0.6	24.1.19	0.8	annual		Not		19.4.19	0.9
	Acid Mist	50.0 mg/Nm3	1	5.9	1	5.7	1	5.4	shutdown		Runnig		1	6.3
											During			
ChloroSulfonic Acid plant reactor		_	2.11.18		21.12.18		24.1.19						-	Not Runnig
	HCI	20.0 mg/Nm3		5.6		5.7		5.6	snutaown		_			During Visit
											Visit			
tor														
Incinerator	PM	150.0 mg/Nm3	17.11.18	56	15.12.18	48	24.1.19	45	7.2.19	53	9.3.19	60	4.4.19	80
	SO ₂	40.0 mg/Nm3		17.4		14.6		14.1		15.2		16.4		17.8
	NOx	25.0 mg/Nm3		11.2		11.4		10.5		10.8		12.3		13.5
!														
Foul Gas Scubber		40.0 mg/Nm3]	Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig
	NOx	25.0 mg/Nm3		During Visit		During Visit		During Visit		During Visit		During Visit		During Visit
ant .	1	-												
	PM	150.0 mg/Nm3		Not in use		Not in use		Not in use		Not in use		Not in use		Not in use
1 / /														
Plant														
Common Scrubber; 2,4D Plant	Cl ₂	9.0 mg/Nm3	4.11.18	4.8	15.12.18	5.1	18.1.19	5.3	21.2.19	6.2	8.3.19	6.7	18.4.19	7.3
	HCI	20.0 mg/Nm3		6.9		6.7		6.8		7.1		7.8		8.1
	Phenol		1	ND		ND		ND		ND		ND		ND
Dryer-1	PM with	20.0 mg/Nm3	4.11.18	4.4	15.12.18	4.6	18.1.19	4.2	21.2.19	5.3	8.3.19	5.9	18.4.19	7.2
	Pesticide													
D 2	compound	20.0 812	4	6.9	-	6.4	-	6.1		7.2		7.6	1	7.9
Dryer-2	PM with Pesticide	20.0 mg/Nm3		6.9		6.4		6.1		1.2		7.6		7.9
			4		-	7.9	1	7.8		8.5		8.9		9.5
Dryer-3	compound PM with	20.0 mg/Nm3		7.6										
Dryer-3		20.0 mg/Nm3		7.6		7.5						0.5		
Dryer-3	PM with	20.0 mg/Nm3												
Dryer-3	PM with Pesticide	20.0 mg/Nm3 20.0 mg/Nm3		6.5		6.8	-	6.5		7.8		8.5		8.1
	Acid (East Site) Sulfuric Acid Plant ChloroSulfonic Acid plant reactor tor Incinerator Foul Gas Scubber ant . Spray Dryer Plant Common Scrubber; 2,4D Plant	NOx Acid (East Site) Sulfuric Acid Plant SO2 Acid Mist ChloroSulfonic Acid plant reactor Cl2 HCI Incinerator PM SO2 NOx Foul Gas Scubber SO2 NOX Spray Dryer PM Common Scrubber; 2,4D Plant Common Scrubber; 2,4D Plant Component Cl2 HCI Phenol PM	NOX 25.0 mg/Nm3	NOx	NOx 25.0 mg/Nm3	NOX 25.0 mg/Nm3	NOx 25.0 mg/Nm3	NOX 25.0 mg/Nm3	NOX 25.0 mg/Nm3 1.11.18 0.5 21.12.18 0.6 24.1.19 0.8 0.5 0	NOx 25.0 mg/Nm3	NOX 25.0 mg/Nm3 Not in use Not in us	NOX 25.0 mg/Nm3 NOX 25.0 mg/Nm3 NOX Suffuric Acid Plant SO2 2.0 kg/T 1.11.18 0.5 21.12.18 0.6 24.1.19 0.8 annual Sox Suffuric Acid Plant Sox S	NOX 25.0 mg/Nm3 NOX 25.0 mg/Nm3 NOX 25.0 mg/Nm3 NOX NOX	NOX 25.0 mg/Nm3

Page 18 of 24

Sr. No.	Stack Details	Paramenter	Permissible	Date of	Obtained	Date of	Obtained Value	Date of	Obtained	Date of	Obtained	Date of	Obtained	Date of	Obtained
51.140.	Stack Details	i didilicitei	Limits	Sampling	Value	Sampling	Obtained value	Sampling	Value	Sampling	Value	Sampling	Value	Sampling	Value
OD DI															
CP Plo		0.	2											-	lu in i
15	MCPA	CI ₂ HCI	9 mg/NM ³	4	Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit
			20 mg/NM ³	4	During visit		During visit		During visit		During visit		During visit		During visit
		SO ₂	40 mg/NM ³												
16	Fipronil	SO ₂	40 mg/NM ³		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig
		HCI	20 mg/Nm3		During Visit		During Visit		During Visit		During Visit		During Visit		During Visit
17	Imidacloprid	NH ₃	175 mg/Nm3		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig
		-	,		During Visit		During Visit		During Visit		During Visit		During Visit		During Visit
18	Pyrathroids	SO ₂	40 mg/Nm3		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig
		HCI	20 mg/Nm3		During Visit		During Visit		During Visit		During Visit		During Visit		During Visit
19	Stack at Amine Plant	NH ₃	175 mg/Nm3	5.11.18	5.8	13.12.18	5.5	3.1.19	5.8	7.2.19	6.2	8.3.19	6.5	4.4.19	7.9
MPSL		3	2751119711115	0.11.10	5.5	10.12.10	5.5	0.1.10	0.0	7.2.10	O.E	0.0.10	0.5	1.1.15	7.5
20	Phosgene Scrubbr at MPSL	Phosgene	0.1 ppm	5.11.18	ND	28.12.18	ND	11.1.19	ND	8.2.19	ND	28.3.19	ND	12.4.19	ND
21	Central Scrubber at MPSL	Phosgene	0.1 ppm	5.11.18	ND	28.12.18	ND	11.1.19	ND	8.2.19	ND	28.3.19	ND	12.4.19	ND
NICO			- 11	1						1					
22	Central scrubber at Nico Plant	Acetonytryle,		-	Not Runnig	-	Not Runnig	-	Not Runnig	-	Not Runnig	-	Not Runnig	-	Not Runnig
		IPA			During Visit		During Visit		During Visit		During Visit		During Visit		During Visit
Ester i	Plant														
23	Scrubber at Ester plant for	Formaldehyde	10 mg/Nm3		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig
	Glyphosate				During Visit		During Visit		During Visit		During Visit		During Visit		During Visit
24	Central Scrubber MCPA Plant	HCI	20 mg/Nm3		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig
				ļ	During Visit		During Visit		During Visit		During Visit		During Visit		During Visit
25	MPP plant scrubber	HCI	20 mg/Nm3]	Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig		Not Runnig
		Phosgene	0.1 ppm		During Visit		During Visit		During Visit		During Visit		During Visit		During Visit
Atul W	/est Site														
26	Shed A05/03/44	CI ₂	9 mg/NM ³	23.11.18	3.2	6.12.18	3.1	4.1.19	3.2	1.2.19	3.5	1.3.19	3.8	3.4.19	4.2
		HCI	20 mg/NM ³		5.5		5.9		5.6		6.1		6.5		7.1
27	Shed B2/12/24 Reaction Vessel	CI ₂	9.0 mg/Nm3	16.11.18	5.4	6.12.18	5.2	3.1.19	5.4	2.2.19	5.8	2.3.19	6.1	4.4.19	6.8
		HCI	20.0 mg/Nm3		4.5		4.8		4.9		5.2		5.3		5.8
28	Shed B18/02/24 Fan	SO ₂	40 mg/NM ³	16.11.18	3.9	6.12.18	3.8	3.1.19	3.9	2.2.19	4.3	2.3.19	4.6	4.4.19	5.2
		Cl ₂	9 mg/NM ³		4.8		4.5		4.6		4.5		4.3		4.6
		HCI	20 mg/NM ³		5.6		5.5		5.3		5.1		5.3		5.1
29	Shed C5/20/15 Chlorinator	CI ₂	9.0 mg/Nm3	17.11.18	5.6	6.12.18	5.7	3.1.19	5.8	2.2.19	6.1	1.3.19	6.2	5.4.19	6.4
		HCI	20.0 mg/Nm3	1	7.4		7.5		7.2		6.8		7.1		7
30	Shed D Niro Spray dryer No. 45	PM	150.0 mg/Nm3	22.11.18	8.6	13.12.18	8.5	10.1.19	8.6	not running	8.6	2.3.19	60	11.4.19	75
			_							during visit					
31	Shed D Niro Spray dryer No.50	PM	150.0 mg/Nm3	1	13.5		13.8	1	13.1		13.1	1	55		58
32	Shed E 7/12/49 Spray Dryer	PM	150.0 mg/Nm3	-	not running	1	not running	1	not running	7.2.19	12.4	7.3.19	12.8	4.4.19	13.2
-	Siled E 7/12/10 Spray Bryer		250.0 mg/11115		during visit		during visit		during visit	7.2.25	12.1	7.0.10	12.0	1.1.15	10.2
33	Shed F F6/1/15 Reaction Vessel	Cl ₂	9.0 mg/Nm3	17.11.18	4.8	6.12.18	4.9	3.1.19	4.8	2.2.19	5.2	1.3.19	5.8	4.4.19	6.3
		HCI	20.0 mg/Nm3	1	5.4	1	5.6		5.8	1	5.9	1	6.2	1	6.7
34	Shed G 10/8/1 (receiver)	Cl ₂	9.0 mg/Nm3	1	Not Runnig	1	Not Runnig	1	Not Runnig	+	Not Runnig	1	Not Runnig	1	Not Runnig
34	Siled G 10/8/1 (receiver)			4	During Visit		During Visit		During Visit		During Visit		During Visit		During Visit
	<u> </u>	HCI	20.0 mg/Nm3	<u> </u>	J	<u></u>	3	<u></u>	3	<u> </u>	J	<u></u>	J	<u> </u>	3
35	Shed H 11/6/17 chlorinator	CI ₂	9.0 mg/Nm3	22.11.18	4.2	14.12.18	4.5	11.1.19	5.1	7.2.19	5.7	7.3.19	6.1	11.4.19	6.5
	1	HCI	20.0 mg/Nm3	1	6.4	1	6.6	1	6.5	1	6.1		6.3	1	6.8
36	Shed K K-13/3/4 Final of Sulfuric	SO ₂	2.0 kg/T	17.11.18	0.9	13.12.18	0.8		Not Runnig	7.2.19	1.2	7.3.19	1.4	11.4.19	1.7
	acid plant	Acid Mist	50.0 mg/Nm3	1	11.8	1	11.4	1	During Visit		10.5		10.8	1	13.5
37	Shed J15/09/25	HBr		17.11.18		13.12.18	ND	10.1.19	ND	6.2.19	ND	7.3.19	ND	11.4.19	ND
	,	SO ₂	40 mg/NM ³	1	6.5	1	6.8	1	6.4	1	6.9	1	7.3	-	8.9
					–		–								

Sr. No.	Stack Details	Paramenter	Permissible	Date of	Obtained	Date of	Obtained Value	Date of	Obtained						
			Limits	Sampling	Value	Sampling		Sampling	Value	Sampling	Value	Sampling	Value	Sampling	Value
38	Shed J12/01/42	SO ₂	40 mg/NM ³		Not Runnig	13.12.18	6.3	10.1.19	4.9	6.2.19	5.8	7.3.19	6.1	11.4.19	7.5
		CI ₂	9.0 mg/Nm3		During Visit		4.5		4.6		5.6		6.2		7.2
		HCI	20.0 mg/Nm3				4.1		4.1		4.8		5.2		6.3
39	Shed J12/03/36	SO ₂	40 mg/NM ³	17.11.18	9.5	13.12.18	9.8	10.1.19	9.1	6.2.19	8.2	7.3.19	8.7	11.4.19	9.1
		HCI	20.0 mg/Nm3		4.5		4.9		4.8		5.3		5.9		6.5
40	Shed N Scrubber Fan N20/08/24	CI ₂	9 mg/NM ³	17.11.18	5.5	13.12.18	5.8	10.1.19	5.7	7.2.19	5.4	9.3.19	5.9	11.4.19	6.3
		HCI	20 mg/NM ³		9.3		9.7		9.9		8.9	1	9.3		9.8
41	Shed N Scrubber Fan N20/02/41	SO ₂	40 mg/NM ³	17.11.18	7.6	13.12.18	7.2	10.1.19	7.3	7.2.19	7.5	9.3.19	7.8	12.4.19	8.3
42	Sulfer Black Plant	H ₂ S		29.11.18	ND	14.12.18	ND	4.1.19	ND	22.2.19	ND	7.3.19	ND	19.4.19	ND
		NH ₃	175 mg/NM ³		14.4		14.8		14.4		15.3		16.8		18.2
43	Sulfer Dyes plant	H ₂ S		29.11.18	ND	14.12.18	ND	4.1.19	ND	22.2.19	ND	7.3.19	ND	19.4.19	ND
		NH ₃	175 mg/NM ³		15.8		15.9		15.7		16.8		15.9		16.5
Atul N	orth Site														
44	N-FDH Plant Catalytic Incinerator	PM	150.0 mg/Nm3	21.11.18	45	19.121.18	48	9.1.19	49	15.2.19	52	14.3.19	55	12.4.19	60
		SO ₂	40.0 mg/Nm3		11.2		11.7		11.2		11.8		12.5		13.5
		NOx	25.0 mg/Nm3		9.9		9.4		9.1		10.6		11.2		11.8
		Formaldehyde	10.0 mg/Nm3		N.D		N.D		N.D		N.D		N.D		ND
45	PHIN Plant vessel	Phosgene	0.1 ppm	22.11.18	ND	15.12.18	ND	9.1.19	ND	14.2.19	ND	14.3.19	ND	10.4.19	ND
46	DCDPS Plant	SO ₃		22.11.18	ND	20.12.18	ND	17.1.19	ND	14.2.19	ND	14.3.19	ND	10.4.19	ND
47	DDS Plant	NH ₃	175 Mg/Nm3	22.11.18	13.8	20.12.18	13.6	17.1.19	12.8	14.2.19	13.2	14.3.19	14.3	10.4.19	15.8
48	SPIC II Plant	SO ₃		22.11.18	ND	19.12.18	ND	17.1.19	ND	14.2.19	ND	14.3.19	ND	13.4.19	ND
49	SPIC I Plant	NH ₃	175 mg/Nm3	22.11.185	12.4	20.12.18	12.2	17.1.19	12.5	15.2.19	13.2	14.3.19	14.6	13.4.19	15.8
50	SPIC IV Plant	NH ₃	175 mg/NM ³	23.11.18	14.9	20.12.18	15.2	17.1.19	14.9	15.2.19	14.3	14.3.19	15.3	10.4.19	16.5
		SO ₃			5.3		5.4		5.8	1	6.2		7.5		8.5
51	Furnace (Phosgene plant-New)	PM	150 mg/NM ³	30.11.18	56	28.12.18	59	25.1.19	62	22.2.19	65	28.3.19	70	25.4.19	85
52	Reactor (Phosgene plant- New)	СО		30.11.18	ND	28.12.18	ND	25.1.19	ND	22.2.19	ND	28.3.19	ND	25.4.19	ND
		Phosgene	0.1 ppm		ND		ND		ND		ND	1	ND	1	ND
	•	•	•			•				_		•		D 20 .	

Page 20 of 24

Sr. No.	Stack Details	Paramenter	Permissible	Date of	Obtained	Date of	Obtained Value	Date of	Obtained	Date of	Obtained	Date of	Obtained	Date of	Obtained
			Limits	Sampling	Value	Sampling		Sampling	Value	Sampling	Value	Sampling	Value	Sampling	Value
_															
East s			1												1
1	FBC boiler El	PM	100 mg/Nm3	28.11.18	50	14.12.18	52	19.1.19	55	6.2.19	58	13.3.19	62	18.4.19	75
		SO ₂	600 mg/Nm3	4	98		95		96		99		95		98
L		NOx	600 mg/Nm3		110		115		118		121		115		120
2	FBC boiler E2	PM	100 mg/Nm3	28.11.18	58	13.12.18	59	18.1.19	62	7.2.19	65 97	15.3.19	68	_	Not Runnig During Visit
		SO ₂ NOx	600 mg/Nm3	4	97 105		92 108		95 110		116		90 112		Dulling Visit
3	FBC boiler No.3	PM	600 mg/Nm3	28.11.18	62	14.12.18	65	18.1.19	66	6.2.19	68	13.3.19	70	18.4.19	80
3	FBC boller No.3	PM	100 mg/Nm3	28.11.18	62	14.12.18	65	18.1.19	ьь	6.2.19	68	13.3.19	70	18.4.19	80
		SO ₂	600 mg/Nm3	1	107	1	109		115		118	1	125		128
		NOx	600 mg/Nm3	1	119		121		125		128		135		145
4	Hot Oil Unit	PM	150.0 mg/Nm3	23.11.18	ND	6.12.18	ND	3.1.19	ND	23.2.19	ND	27.3.19	ND	10.4.19	ND
	(Resorcinol Plant)	SO ₂	100 ppm	1	ND		ND		ND		ND		ND		ND
		NOx	50 ppm	1	35		39		41		43		40		45
5	DG set 1010 KVA (Standby)	PM	150 mg/Nm ³		Stand by		Stand by		Stand by		Stand by		Stand by		Stand by
		SO ₂	100 ppm	1											
		NOx	50 ppm	1											
West	Site		•												
6	FBC boiler W1	PM	100 mg/Nm3	28.11.18	51	6.12.18	58	25.1.19	55	25.2.19	57	15.3.19	61	10.4.19	65
		SO ₂	600 mg/Nm3	1	75		79		75		79		85		95
		NOx	600 mg/Nm3	1	115		123		115		123		128		135
7	Hot Oil Plant shed-B	PM	150.0 mg/Nm3	23.11.18	ND	6.12.18	ND	3.1.19	ND	1.2.19	ND	27.3.19	ND	25.4.19	ND
		SO ₂	100 ppm	1	ND		ND		ND		ND		ND		ND
		NOx	50 ppm	1	36		38		39		41		43		55
8	Oil burner Shed B	PM	150.0 mg/Nm3		Stand by		Stand by		Stand by		Stand by		Stand by		Stand by
	(Stand By)	SO ₂	100 ppm	1											
		NOx	50 ppm	1											
9	Boiler (50 TPH 2 Nos) (New boilers) W2,W3	PM	50 mg/Nm3	21.11.18	38	26.12.18	35	25.1.19	38	22.2.19	41	15.3.19	49	12.4.19	55
		SO ₂	600 mg/Nm3	1	88		85		88		91		97		105
		NOx	300 mg/Nm3	1	73		71		75		79		85		95
		Mercury	0.03 mg/Nm3		ND		ND		ND		ND		ND		ND
10	DG set 1500 KVA	PM	150.0 mg/Nm3		Stand by		Stand by		Stand by		Stand by		Stand by		Stand by
	(Stand By)	SO ₂	100 ppm	1											
	<u> </u>	NOx	50 ppm	1		<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>			<u> </u>
North	Site						_								
11	Thermic fluid heater of	PM	150.0 mg/Nm3	21.11.18	ND	27.12.18	ND	24.1.19	ND	23.2.19	ND	6.3.19	ND	12.4.19	ND
	DCO/DAP Plant	SO ₂	100 ppm	1	ND	1	ND	1	ND		ND	1	ND		ND
	1	NOx	50 ppm	1	28	1	29	1	31		35	1	39	1	40

Page 21 of 24

Table 3 : Ambient Air Monitoring details

Station	Parameter	Limit microgm/NM ³	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19
	PM 2.5	60	29	27	29	31	35	40
	PM10	100	31.1	32.5	34.8	35.2	32.2	50
CC 10 /	SO2	80	7.6	7.3	7.9	8.5	8.5	9.2
66 KV	NOx	80	6.8	7.4	7.9	8.5	8.9	8.8
	Ammonia	850	9	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	29	32	35	38	42	45
	PM10	100	35	38	39	42	48	50
Opposite	S02	80	9.4	9.5	9.8	10.2	11.1	12.1
Shed D	NOx	80	8.8	8.9	8.7	9.2	9.6	10.1
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	28	29	31	30	32	35
	PM10	100	39	42	45	43	45	50
	SO2	80	8.5	8.7	9.1	8.8	9.2	10.1
Near West site ETP	NOx	80	8.6	8.5	8.6	8.8	8.9	9.5
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	26	28	29	31	35	38
	PM10	100	38	41	40	40	45	60
	S02	80	10.4	10.3	10.2	9.5	9.9	10.3
Near North ETP	NOx	80	9.7	9.4	9.4	9.1	9.5	9.8
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	33	37	38	42	49	55
	PM10	100	33	38	38	45	48	55
	S02	80	8.6	8.4	8.9	9.2	9.5	9.9
TSDF	NOx	80	7.9	8.3	8.1	8.5	8.8	9.1
		850	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	29	27	28	27	29	35
	PM10	100	39	42	41	43	44	50
	S02	80	9.8	9.9	10.1	9.9	9.5	9.8
Main Guest House	NOx	80	13.4	13.5	14.1	14.8	15.1	16.5
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	25	27	24	25	29	30
	PM10	100	39	42	43	45	46	45
	SO2	80	7.5	7.7	8.1	8.5	8.9	9.3
Wyeth Colony	NOx	80	11.8	11.9	12.1	12.6	12.8	13.5
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Gram panchayat hall	PM 2.5	60	32	35	32	35	37	40

	PM10	100	35	39	38	41	43	45
	S02	80	8.3	8.5	8.9	9.1	9.3	9
	NOx	80	12.9	12.7	12.9	13.2	12.5	12.8
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	26	28	25	27	25	30
	PM10	100	44	48	47	49	51	55
NASS SECTION NEW PROPERTY.	SO2	80	8.9	8.7	8.9	9.2	8.8	9.1
Main office, North site	NOx	80	12.6	12.8	13.2	12.8	12.7	13.1
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	29	27	29	32	36	35
	PM10	100	33.6	31.3	33.2	34.9	35.7	40.5
	S02	80	7.9	7.9	7.4	7.5	7.8	8.5
Haria water tank	NOx	80	8.4	7.9	8.2	8.5	8.4	9.5
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND

Table 4 : Fugitive Emission Monitoring details

Plant	Area	Parameter	Prescribed Limit	Results of VOCs in Milligram per NM ³						
				Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	
2,4 D	Reactor	Phenol	19	10.2	14.1	9.2	12.6	13.2	12.4	
	Buffer tank	Chlorine	3.0	1.4	1.1	0.8	1	1.6	2.1	
Resorcinol	Benzene storage tank area near vent	Benzene	15	9.6	11.1	14	9.2	7.1	5.4	
	Near Extraction/scrubber unit	Butyl acetate	-	1.6	2.9	5.5	7.1	10.8	7.5	
Pharma	At second floor work area	Ammonia	18	13.2	12.2	9.9	14.6	10.4	10.1	
	Ammonia recovery area	Ammonia	18	3.1	7.2	12.2	6.4	8.1	7.5	
Ероху - І	At vacuum pump 2nd floor	ECH	10	2.6	3.6	5.4	3.1	2.9	3.8	
	At vessel POS 1208 G.F	ECH	10	4.1	5	3.1	6.2	5.3	6.1	
Shed H	At second floor work area	Nitrobenzene	5	1.3	2.5	1.8	2.8	3.7	4.4	
Shed J	Buffer Tank	Chlorine	3	1.1	1.8	2.2	1.6	2.6	2.1	

Table 5 : Noise level monitoring data (Day Time)

Sr.	Location				Permissible						
No.											
		Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	75			
1	Near Main guest house	63.6	63.8	64.2	65.2	65.9	68.9	75			
2	Near TSDF	63.8	63.3	63.8	64.3	63.2	66.2	75			
3	At Wyeth Colony	63.6	63.9	64.5	65.3	66.8	60.4	75			
4	Gram Panchayat Hall	61.9	61.3	62.4	63.5	64.2	69.5	75			
5	Near Main Office North site	65.5	65.8	66.9	67.8	67.9	66.5	75			
6	ETP North site	66.5	66.7	67.3	68.3	69.1	70.2	75			
7	Opposite shed D	64.7	64.9	65.4	66.5	67.2	68.9	75			
8	ETP West site	65.9	65.4	66.8	67.9	68.5	68.7	75			
9	Water tank Haria road	62.9	62.5	63.1	64.2	64.9	64.5	75			
10	Near 66KVA substation	64.3	64.5	65.3	66.3	67.1	67.8	75			

Table 6: Noise level monitoring data (Night Time)

Sr.	Location	Noise L	evel, dl		Permissible			
No.					Limits, dBA			
		Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	70
1	Near Main guest house	53.1	53.5	55.6	56.1	55.7	56.1	70
2	Near TSDF	56.9	56.4	57.8	58.3	60.1	60.3	70
3	At Wyeth Colony	50.8	50.5	51.3	52.4	52.5	52.4	70
4	Gram Panchayat Hall	52.7	52.1	53.4	54.2	54.7	55.1	70
5	Near Main Office North site	55.7	55.9	56.8	57.8	58.5	58.9	70
6	ETP North site	52.5	52.2	53.7	54.1	54	55.1	70
7	Opposite shed D	53.8	53.8	54.9	55.2	55.3	55.9	70
8	ETP West site	54.8	54.7	55.8	55.9	56.2	56.3	70
9	Water tank Haria road	53.7	53.4	54.9	55.2	55.8	55.2	70
10	Near 66KVA substation	51.8	51.7	53.7	54.8	55.1	56.2	70

ENVIRONMENTAL AUDIT REPORT OF

M/S. ATUL LIMITED.

Plot No. 5, 6, 29, 30, 33, 34, 35, 37, 38, 80, 81, 84, 85, 91 & Survey No. 274, 275, 276

AT & PO ATUL – 396020, Dist.: Valsad.

[Audit Period: April 2018 - March 2019]

Prepared By:

PACIFIC SCHOOL OF ENGINEERING

(Centre for Environmental Research & Technology)

GPCB RECOGNISED SCHEDULE - I ENVIRONMENTAL AUDITOR

Address:

Kadodara Palsana Highway (NH-8), At. Sanki, Tal. Palsana, Dist. Surat - 394305. Ph: +91 9904408978

Email: cert.pse@gmail.com

OBSERVATIONS

- 1. The unit has been granted consolidated consent vide no. AWH-67717 dated 04/11/2014 which is valid up to 03/11/2019.
- 2. Industry is an improvement driven, integrated chemical company serving about 4,000 customers belonging to 27 industries across the world. The salient features of their infrastructure are as follows:

Land Area

500 hectares.

Effluent Drainage

4 Km.

system

Effluent Treatment

30,000 m³/day

Plants

Solid Waste Disposal :

Incinerator, TSDF, Co processing

Captive Power Plants

56 MW

Water Storage

1.6 million m³

- 3. Industry is ISO-14001:2004 certified company and has received more than 16 awards in the area of Environmental pollution control from prestigious organizations till 1998.
- Electricity consumption is decreased by 0.14 % in April 2018 March 2019 as compared to previous audit period April 2017 - March - 2018.
- Water consumption and Wastewater generation is increased by 7.81% and 9.39% respectively in April 2018 March 2019 as compared to previous audit period April 2017 March 2018.
- 6. Norms for production, final effluent discharge, ambient emission and stack emission are meeting the norms given by GPCB.
- 7. Final treated effluent is discharged in to an Arabian sea through Estuary Zone of Par River.
- 8. Industry owned TSDF site for disposal, recovery and incineration of hazardous waste.
- Industry has employed full time medical officer. Also, satisfactory medical facilities have been provided.
- 10. Fatal accident at phosgene plant reported during the audit period. Industry has taken necessary safety corrective actions.
- 11. Industry strictly follows the safety rules for wearing personal protective devices.
- 12. Company has shifted to membrane cell system and completely phase out Hg cell system for chlor-alkali production.
- 13. Industry has implemented various steps in the area of environmental management system. They are mainly:

"Centre for Environmental Research & Technolog PACIFIC SCHOOL OF ENGINEERING, SURA

Page 3 of 141

- First in Gujarat to have complete In-house Treatment facility for all types of waste.
- Liquid Waste: State-of-Art effluent treatment plant consisting of three operational Effluent Treatment Plants.
- Own 4 KM pipeline to discharge treated effluent in the estuary zone of river Par.
- · Own incinerator and TSDF for hazardous waste treatment.
- Over 50,000 saplings planted every year in and around Atul Complex.
- Water harvesting (850 million litre) and bore well recharging.
- 100% utilization of fly-ash.
- 14. Industry has implemented various steps for smooth functioning of EMS. It mainly includes recovery from process, natural resources conservation and cleaner production. Details of the same are enclosed herewith.

RECOMMENDATIONS

- Installation of effluent network system at above ground is underway. Recommendation for completion of job.
- 2. To control dustiness surrounding to ETP and Boiler, housekeeping is highly recommended.
- 3. It is recommended to install auto calibration system for OCEMS (Online Continuous Environmental Monitoring System) as per CPCB guidelines.
- 4. It is recommended to comply with conditions of Environmental Clearance received.
- 5. It is recommended to explore possibility of reusing condensate being generated from MEE.

ENVIRONMENTAL FRIENDLY REPLACEMENTS / IMPROVEMENTS IN, WITHIN AND AROUND THE INDUSTRY / ORGANIZATION /

Following are some examples of innovative approaches adopted to reduce the pollution load, saving renewable resources, adoption of cleaner technology in recent years:

❖ RECOVERY FROM MANUFACTURING PROCESS:

Recovery at source is proven to be the best solution for environmental treatment. The company has also focused on critical areas for various at source recovery for various purposes. This has not only reduced pollution load in EMS but also provided economic benefit. Details of some of at source treatment initiated in 18-19 and recent past are described below:

"Centre for Environmental Research & Technology"
PACIFIC SCHOOL OF ENGINEERING, SURAT

Page 4 of 141

ANNEXURE – 23 COMPLIANCE REPORT

	Detail	Has valid consent/authorization	Complying with standards & other conditions
(A)	Compliance Report of Water as per Water act, 1974. If No, Give comment	The consolidated consent vide	Complied
(B)	Compliance Report for Air as per Air act, 1981. If No, Give comment	no. AWH-67717 dated 04/11/2014 under the provision of water Act-1974,	Complied
(C)	Compliance Report for the storage and handling of hazardous	Air act-1981and Hazardous Rules-1989 is valid up to 03/11/2019.	Complied

Atul Limited

Project: CRZ clearance for proposed 4.0 km long treated effluent discharge pipe line in Par estuary, Dist. Valsad. CRZ Compliance for the period November 2018- April 2019 as per CRZ Clearance No. ENV-1097-2942-P, dated 17.01.1998.

No. Condition Compliance

NO.	Condition	Compilance								
1	The Company shall strictly adhere to									
	all the provisions of CRZ notification of 1991 and subsequent amendments.	Details	ls are g	iven below in the table	e:					
		No.		Clause under CRZ notific	ation	Co	mpliance			
		1		Imposes the given restriction and expansion of indust processes in CRZ.	ctions in setting	up No	oted			
		2		List of prohibited activitie			oted			
		3		Guideline for regulatio activities.	•		oted			
		4		Procedure for monitoring		Mi	oplicable inistry	to		
		Ann 1		Classification of costal re			oted			
		Ann 2		Guidelines for develop resort/ hotels.						
2		Ann 3		List pf petroleum prod storage in CRZ except CF		in N	4			
	The company shall strictly adhere to the conditions stipulated by the Gujarat Pollution Control Board in their Consent order.									
	treated effluent meeting the norms prescribed by G.P.C.B.	variou The m the en	us para naximu nission	ged effluent is meetin meters of treated efflu m values during the co went beyond the stipu	ent is given in	Table 1 od conf	L. (Pl. see	pg. no. 3)		
				given below:	Tar	1	C 11			
		Sr. No.	Parar	neter	Norms		s for the p .8 –Apr 19			
		110.				Min.	Max.	Avg.		
		1	рН		5.5-9.0	7.08	7.95	7.44		
		2	Temp	perature	40 deg C	30.1	32.6	31.05		
		3		ır (pt. co. scale)in units		40	130	65.00		
		4	1	ended solids	100 mg/l	23	86	52.00		
		5	Phen	olic Compounds	5 mg/l	0.28	0.75	0.48		
		6	Cyan	ides	0.2 mg/l	ND	ND	ND		
		7	Fluori	des	2 mg/l	0.32	1.2	0.60		
		8	Sulph	iides	2 mg/l	0.4	1.8	1.33		
		9		onical Nitrogen	50 mg/l	32	48	39.67		
		10	Total	Chromium	2 mg/l	ND	ND	ND		

		11	Hexavalent Chromium	1 mg/l	ND	ND	ND	
		12	BOD (3 days at 27°C)	100 mg/l	44	70	61.50	
		13	COD	250 mg/l	202	232	216.67	
	The company shall keep records of	The effluent quality at the ETP discharge point is regularly being monitore by the Environmental auditors appointed by GPCB. Latest audit report for the year 16-17 was submitted vide our letter Atul/SHE/CRZ Compliance/O dated 17/7/17. The same has been already submitted to GPCB vide our latter Atul/GPCB/En. Audit/16-17 dated 28/6/17. The same was submitted to CPCB also as directed. GPCB also monitor the treated effluent quality at intervals. Recent result be GPCB is attached as Annexure 2 . The river water quality at the discharge point is regularly being monitored be GPCB. Agencies like NIO, Pollucon Laboratories Pvt. Ltd- MoEF approve agency, Envision Enviro Technologies Pvt. Ltd –NABET accredited have als done the monitoring during the years. Relevant extracts from latest report were submitted to Ministry vide our letter Atul/SHE/MoEF/Visit/3 date 4/4/17. f Complied.						
	the quality of effluents being discharge during the tides as per the recommendations of N.I.O.	tides i	re keeping the records of qual n soft copy as per the recomm	,	_	ischarged	d during the	
4	The company shall submit the quarterly progress report of compliance of conditions.	Depai report	lied. nave submitted progress retment of Gujarat during the series were already submitified. SHE/MoEF/Visit/3 dated 4/4/17	e pipe line i ted to N	nstallatio	on work		
5	The company shall bear all the cost of the agency to be appointed by the Government for overseeing/monitoring the project activities during construction/operational phases.	Noted	l and will be complied as and v	when it will c	ome.			
6	The company shall comply with all the	Comp	lied.					
	recommendations, additional conditions and environmental safeguards prescribed in the report of NIO dated March, 1997.	compl Gujar	liance to NIO recommend liance report submitted to F at was already submit SHE/MoEF/Visit/3 dated 4/4/17	orest and E ted to M		nent Dep		
6	The company shall submit an Environmental Audit Report every year.	· ·						
7	The company shall obtain the necessary permissions from different Government department/agencies under different laws/Acts.	nt .						
8	Any additional conditions which may imposed from time to time.		and will be complied.					

Table 1: Quality of treated effluent

Sr. No.	Parameter	Results						GPCB Limits		
		Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19			
1	рН	7.08	7.25	7.4	7.48	7.95	7.45	5.5 to 9.0		
2	Temperature °C	30.2	30.8	30.1	30.7	32.6	31.9	40 °C		
3	Colour (pt. co. scale)in units	50	50	40	50	70	130			
4	Suspended solids, mg/l	38	54	36	23	75	86	100		
5	Phenolic Compounds, mg/l	0.28	0.35	0.46	0.56	0.75	0.45	5		
6	Cyanides, mg/l	ND	ND	ND	ND	ND	ND	0.2		
7	Fluorides, mg/l	0.55	0.45	0.32	0.45	0.65	1.2	2		
8	Sulphides, mg/l	0.4	1.2	1.8	1.2	1.8	1.6	2		
9	Ammonical Nitrogen, mg/l	42	48	40	36	32	40	50		
10	Total Chromium, mg/l	ND	ND	ND	ND	ND	ND	2		
11	Hexavelent Chromium, mg/l	ND	ND	ND	ND	ND	ND	1		
12	BOD (3 days at 27°C), mg/l	44	58	68	64	70	65	100		
13	COD, mg/l	210	232	226	202	220	210	250		
Note	Note: ND is Not Detectable.									

ENVIRONMENTAL AUDIT REPORT OF

M/S. ATUL LIMITED.

Plot No. 5, 6, 29, 30, 33, 34, 35, 37, 38, 80, 81, 84, 85, 91 & Survey No. 274, 275, 276

AT & PO ATUL – 396020, Dist.: Valsad.

[Audit Period: April 2018 - March 2019]

Prepared By:

PACIFIC SCHOOL OF ENGINEERING

(Centre for Environmental Research & Technology)

GPCB RECOGNISED SCHEDULE - I ENVIRONMENTAL AUDITOR

Address:

Kadodara Palsana Highway (NH-8), At. Sanki, Tal. Palsana, Dist. Surat - 394305. Ph: +91 9904408978

Email: cert.pse@gmail.com

OBSERVATIONS

- 1. The unit has been granted consolidated consent vide no. AWH-67717 dated 04/11/2014 which is valid up to 03/11/2019.
- 2. Industry is an improvement driven, integrated chemical company serving about 4,000 customers belonging to 27 industries across the world. The salient features of their infrastructure are as follows:

Land Area

500 hectares.

Effluent Drainage

4 Km.

system

Effluent Treatment

30,000 m³/day

Plants

Solid Waste Disposal :

Incinerator, TSDF, Co processing

Captive Power Plants

56 MW

Water Storage

1.6 million m³

- 3. Industry is ISO-14001:2004 certified company and has received more than 16 awards in the area of Environmental pollution control from prestigious organizations till 1998.
- Electricity consumption is decreased by 0.14 % in April 2018 March 2019 as compared to previous audit period April 2017 - March - 2018.
- Water consumption and Wastewater generation is increased by 7.81% and 9.39% respectively in April 2018 March 2019 as compared to previous audit period April 2017 March 2018.
- 6. Norms for production, final effluent discharge, ambient emission and stack emission are meeting the norms given by GPCB.
- 7. Final treated effluent is discharged in to an Arabian sea through Estuary Zone of Par River.
- 8. Industry owned TSDF site for disposal, recovery and incineration of hazardous waste.
- Industry has employed full time medical officer. Also, satisfactory medical facilities have been provided.
- 10. Fatal accident at phosgene plant reported during the audit period. Industry has taken necessary safety corrective actions.
- 11. Industry strictly follows the safety rules for wearing personal protective devices.
- 12. Company has shifted to membrane cell system and completely phase out Hg cell system for chlor-alkali production.
- 13. Industry has implemented various steps in the area of environmental management system. They are mainly:

"Centre for Environmental Research & Technolog PACIFIC SCHOOL OF ENGINEERING, SURA

Page 3 of 141

- First in Gujarat to have complete In-house Treatment facility for all types of waste.
- Liquid Waste: State-of-Art effluent treatment plant consisting of three operational Effluent Treatment Plants.
- Own 4 KM pipeline to discharge treated effluent in the estuary zone of river Par.
- · Own incinerator and TSDF for hazardous waste treatment.
- Over 50,000 saplings planted every year in and around Atul Complex.
- Water harvesting (850 million litre) and bore well recharging.
- 100% utilization of fly-ash.
- 14. Industry has implemented various steps for smooth functioning of EMS. It mainly includes recovery from process, natural resources conservation and cleaner production. Details of the same are enclosed herewith.

RECOMMENDATIONS

- Installation of effluent network system at above ground is underway. Recommendation for completion of job.
- 2. To control dustiness surrounding to ETP and Boiler, housekeeping is highly recommended.
- 3. It is recommended to install auto calibration system for OCEMS (Online Continuous Environmental Monitoring System) as per CPCB guidelines.
- 4. It is recommended to comply with conditions of Environmental Clearance received.
- 5. It is recommended to explore possibility of reusing condensate being generated from MEE.

ENVIRONMENTAL FRIENDLY REPLACEMENTS / IMPROVEMENTS IN, WITHIN AND AROUND THE INDUSTRY / ORGANIZATION /

Following are some examples of innovative approaches adopted to reduce the pollution load, saving renewable resources, adoption of cleaner technology in recent years:

❖ RECOVERY FROM MANUFACTURING PROCESS:

Recovery at source is proven to be the best solution for environmental treatment. The company has also focused on critical areas for various at source recovery for various purposes. This has not only reduced pollution load in EMS but also provided economic benefit. Details of some of at source treatment initiated in 18-19 and recent past are described below:

"Centre for Environmental Research & Technology"
PACIFIC SCHOOL OF ENGINEERING, SURAT

Page 4 of 141

ANNEXURE – 23 COMPLIANCE REPORT

	Detail	Has valid consent/authorization	Complying with standards & other conditions
(A)	Compliance Report of Water as per Water act, 1974. If No, Give comment	The consolidated consent vide	Complied
(B)	Compliance Report for Air as per Air act, 1981. If No, Give comment	no. AWH-67717 dated 04/11/2014 under the provision of water Act-1974,	Complied
(C)	Compliance Report for the storage and handling of hazardous	Air act-1981and Hazardous Rules-1989 is valid up to 03/11/2019.	Complied

ANALYSIS REPORT FOR WATER / WASTE WATER SAMPLE

Sample ID:254051 - Analysis Completion:11/03/2019

Dves and Dve-Intermediates / LAB Inward: 48708

Gujarat Pollution Control Board, Vapi C5/124, GIDC Vapi, Near Hotel Pritam, Vapi - 396 195 Tele:(0260) 2432089

TEST REPORT

Test Report No.: 48708 Date: 12/03/2019

1. Name of the Customer : Atul Limited - 23158

2. Address : 5, 6, 29, 30, 33, 34, 35, 37, 38, 80, 81, 84, 85, 91, etc.,AT & P.O.ATUL, Dist. Valsad, Pin:

ATUL-396020, Taluka: Valsad, District: Valsad, GIDC: Not In Gidc

3. Nature of Sample : REP-Representative/Grab, (Insp Type : ROU-Routine Visit)

4. Sample Collected By : Rachana M. Kantharia, SO

: 5 lit 5. Quantity of Sample Received 6. Code No. of the Sample : 254051

7. Date & Time of Collection & Inwarding : 27/02/2019, (1800 to 1800) & 01/03/2019

8. Date of Start & Completion of Analysis : 01/03/2019 & 11/03/2019

: From final outlet of ETP (Central ETP) ~-9. Sampling Point

10. Flow Details (Remarks)

11. Mode of Disposal : Estuary zone of River Par 12. Ultimate Receiving Body : Estuary zone of river par

13. Temperature on Collection : 29 & pH Range on pH Strip :@ 7 to 8 On pH strip

14. Carboys Nos for : barcode & Color & Appearance : Brownish

15. Water Consumption & W.W.G (KLPD) : Ind:23726.000, Dom:938.000 & Ind:21727.000, Dom:939.000

Sr	Parameter	Unit	Test Method	Range of Testing	Result
1	Temperature	Centigrade	IS: 3025 (Part – 9) – 1984(Reaffirmed 2006)	Ambient oC - 60 oC	29
2	рН	pH Units	4500 H+ B APHA Standard Methods 22nd edi.2012	1 – 14 pH value As or	6.98
3	Colour	Pt.Co.Sc.	2120 B APHA Standard Methods 22nd edi. 2012	2 - to 99 Hazen & 1-50	125
4	Total Dissolved Solids	mg/l	Gravimetric method. (2540 C APHA Standard Method	10 – 200000 mg/L	3560
5	Suspended Solids	mg/l	Gravimetric method. (2540 D APHA Standard Method	2 – 10000 mg/L	54
6	Ammonical Nitrogen	mg/l	1).Titrimetric method (4500 NH3 B & C APHA Standa	1 - 2000 mg/l.	5.64
7	Chloride	mg/l	Argentometric method. (4500 CI? B APHA Standard N	1 - 50000 mg/l	1163
8	Sulphate	mg/l	APHA(22nd edi)4500 SO4 E	2-40mg/l	600
9	Chemical Oxygen Demand	mg/l	APHA (22nd Edition)- 5220 B Open Reflux Method-2	5.0- 50000 mg/l	242
10	Oil & Grease	mg/l	Liquid – Liquid Partition Gravimetric method. (5520 B	01 – 1000 mg/l	2.8
11	Phenolic Compounds	mg/l	4 Amino Antipyrene method without Chloroform Extra	0.1 – 50 mg/l	1.292
12	Sulphide	mg/l	APHA (22nd Edi.)4500-s2-F –iodometric Method	1-500.0 mg/l	BDL
13	B.O.D (3 Days 27oC)	mg/l	3 - Day BOD test. (IS 3025 (Part 44) 1993 Reaffirmed	05–50000 mg/l	55

Laboratory Remarks: Freeze By:445-lab_445 Dt.: 12/03/2019

Jigo

J.D.OZA, Lab Head

Field Observation:

Note:

- 1. * These parameters are NOT covered under the scope of NABL.
- 2. The results refer only to the tested samples and applicable parameters. Endorsement of products is neither inferred nor implied.
- 3. Samples will be destroyed after 10 days from the date of issue of test report unless otherwise specified.
- 4. This report is not to be reproduced wholly or in part or used in any advertising media without the permission of the Board in writing.
- 5. The Board is not responsible for the authenticity for the samples not collected by the Board's officials.
- 6. Total liability of our laboratory is limited to the invoiced amount. Any dispute arising out of this report is subject to Gujarat Jurisdiction only.
- 7. Permissible Limits: as per Schedule VI of EPA Rules, 1986 as ammended by Second and Third ammendment 1993 for Effluents
- 8. Physicochemical and microbiological parameters, Std.Methods for Water and Waste Water- 22nd Edition by APHA.
- 9. Bioassay test (for toxicity) -IS:6582:Part-2:2001; Reaffirmed 2007.

Atul Limited

Project: Setting up an addition captive power plant of 22 MW at post Atul, Dist. Valsad

EC Compliance Report for the period November 2018-April 2019 as per EC No. SEIAA/GUI/EC/1(d)/340/2016 No. Condition Compliance Specific Conditions: emission 1. Unit shall comply the Complied. Monthly monitoring is being done by GPCB approved M/s. Royal standards mentioned in the Notification Environment Auditing & Consultancy Service, Rajkot, an NABL approved agency. by MOEF&CC vide S.O. 3305(E) dated The maximum values during the compliance period confirms that at no time the 07/12/2015. emission level went beyond the stipulated standards. Parameter wise summary is given below: Summary of Stack results: Standard values Values for the period Nov 18-No. Parameter Unit as per CCA Apr 19 Min. Max. Avg. SPM 50.0 ma/Nm³ 35 49 41.5 SO₂ 600 mg/Nm³ 85 105 92.33 2 NOx 3 300 mq/Nm³ 71 79.66 0.03 ND ND ND Mercury mq/Nm³ Details of stack results is given in Table 1. (Pl. see pg. no. 13) 2. All measures shall be taken to prevent Complied. No contamination found. soil and ground water contamination. 3. The project proponent shall submit the Complied. Detailed study report on Groundwater and soil quality in and around detailed study report to Gujarat Atul was done during the year 18-19 by reputed and NABL approved agency Pollution Control Board (GPCB) at least Pollucon Laboratories Pvt. Ltd. Surat and attached herewith as Annexure 1. once in a year, through the reputed institute or university to assess the impacts on soil and ground water quality, if any due to application of waste water generation from the CPP and shall adopt the additional mitigation measures as may be suggested through such studies. A.2:WATER: The fresh water requirement for the **Complied.** The average water consumption for the referred expansion for the report proposed expansion shall not exceed period is 1136 KL/day only which is well within the limit. Detail break up is given in 2095 KL/day and it shall be met through below table: Water Mar-19 the existing water supply system from Nov-18 Dec-18 lan-19 Feb-19 Apr-19 Total Consumption River par. 33013 33860 29790 207139 Month wise 42220 26707 41549 1362 890 1065 1092 1064 1340 Per day 1136 (avg.) The maximum values during the compliance period confirms that at no time the wastewater generation went beyond the stipulated value. Summary is given below: Stipulated Values for the period Nov-18 –Apr 19 Water Consumption value Min. Max. Avg. 890 Water Consumption KL/day 2095 1362 1136 Complied. We already have permission from Government of Gujarat for this Permission from the Concern authority for additional water requirement shall additional requirement. be obtained. Metering of water shall be done and its Complied. Metering of water is done and its records are maintained. No ground 5 records shall be maintained. No ground water is tapped for meeting the project requirements.

	water shall be tapped in any case for								
	meeting the project requirements.								
6.	The industrial effluent generation from the proposed expansion shall not exceed 270 KL/day and entire quantity of effluent shall be utilized for ash	Complied . The average wastewater generation for the report period is 71.85 KL/day only which is well within the limit and entire quantity is utilized in house and no discharge to ETP. Detail break up is given in below table:							
	quenching, dust suppression, fire hydrant make up, Gardening plants	Wastewater generation	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	Total
	floor cleaning.	Month wise	2171	1963	2032	2493	2070	2204	12933
		Per day	72.37	65.43	67.73	83.10	69.00	73.47	71.85 (avg.)
		The maximum wastewater g below:	jeneration	went		ne stipul	ated valu		ry is given
		Wastewater g	eneration		value		•		·
		Wastewater g	eneration r	n³/d	270	Min. 65.43	Max. 83.10		
		Entire quantity yard to attend			is being ut	ilized in o	ash quencl	hing and c	oal storage
7.	There shall be no discharge of industrial effluent from the proposed project in any case.	Complied. New from D M Plan	utralizatio	n pit ho					
8.	Domestic waste water generation shall not exceed 1 KL/day Which shall be disposed of into soak system.	Complied. Don	nestic wa	ste wat	er dispose	d throug	h soak pit	system.	
9.	The unit shall provide metering facility at the inlets and outlets of the collection cum reuse system of waste water and maintain records of the same.	Complied. Met water and reco				the collec	tion cum r	euse syste	em of waste
10.	Proper logbooks of waste water reuse system showing quantity and quality of effluent reused shall be maintained and furnished the GPCB from time to time.	Complied. Log	books ma	intaine	d.				
11.	Rain water harvesting of rooftop rain water shall be undertaken as proposed in the EIA report of the project and the same water shall be used for the various activities of the project to conserve fresh water as well as to recharge ground water through percolation wells. Before recharging the rain water, pre-treatment must be done to remove suspended matter.	Complied. Rooftop rain water from Coal sheds and New TG building is collected and used as make up water for cooling tower. Rain water also collected from surrounding area and pumping it to the Clarifloculator units.							
	A.3 AIR:								
12.	Existing two coal fired steam boilers shall be replaced with two AFBC Boilers having capacity 50 TPH each.	Complied. Two AFBC boiler.	o old stok	er fired	boilers ha	ve alreac	ly been di	smantled [.]	for the new
13.	Fuel (Indian coal/and or Imported coal and or Lignite) to the tune of 16725 MT/M shall be used for proposed boilers.	Complied. The average fuel consumption for the report period is 13774 MT/M only which is well within the limit. Detail break up is given in below table:							

		Fuel	Nov-18	Dec-18	lan-19	Feb-19	Mar-19	Δnr_19	Total	Avg.	
		consumption	1404-18	Dec-18	Juli-13	ED-13	Mui-19	Aþi-13	Total	Avg.	
		Month wise	13963	10705	13497	14111	15235	15130	82641	13774	
		The maximum v	alues d	uring the	compli	ance peri	od confii	ms that	t at no t	ime the	
		wastewater gei									
		below:		Cultural	-41	\			0 4 1		
		Fuel consumptio	n	Stipul value		values to	r the perio	oa Nov-1	18 –Apr 19		
						Min.	Max.	Avg			
		Fuel consumption	n MT/M	1672	5	10705	15235	137	74		
14.	Sulfur and ash content of the fuel to be used shall be analyzed and its record shall be maintained.	Complied. Sulfur maintained. Ash Content: 30 Sulphur Content	-35 % (I	ndian Co	al), 10-	12% (lm;	oorted co	oal)	d its reco	ords are	
15	A Long term study of radio activity and heavy metal contents in coal/ lignite to be used shall be carried out through a reputed institute and results thereof analyzed regularly and reported along with monitoring reports.	Complied. The r been carried ou Compliance/03	ıt and F	Report ho	-				_		
	Thereafter mechanism for an in-built continuous monitoring for radio activity and heavy metals in coal/lignite and Flyash (Including bottom ash) shall be put in place.										
16.	Height of flue gas stacks attached to boilers shall be minimum 74.58 meters.	Complied . The e			rsed thi	ough ad	equate l	neight o	f stacks	as per	
		For Boilers : Stac	ck Heigh	t H=14(Ç)) ^{0.3}						
		Height of the sto	ack is 10	6 meters	, which	is actuall	y higher	than no	rms.		
17.	A flue gas stack of 74.58 m height shall	Complied. Heigh	nt of the	stack is	106 me	eters. Onl	ine mon	itoring s	ystem f	or SPM,	
	be provided with online monitoring	SOx and NOx is								/- DI	
	system to proposed steam Boiler. Mercury gas emission from stacks shall	Mercury emissio Environment Au									
	also be monitored on periodic basis.	Please refer poir		Consuito	iricy Sci	vice, rag	KOL, GITT	ільс ар	proved	agency.	
18.	High efficiency Electro static	Complied. Total		SP has b	een ins	talled an	d commi	ssioned	to mee	t further	
	precipitators (ESP) with efficiency not	stringent require	ment al	50.							
	less than 99.9% shall be installed for										
	control of flue gas emission from the proposed Boilers.										
	The ESP shall be operated efficiently to	Complied. Partic	culate m	atter em	nission o	did not e	xceed th	ne GPCE	3 norms	during	
	ensure that particulate matter emission	report period. Pl								3	
	does not exceed the GPCB norms.										
	The control system shall be designed	Complied. Flue g				ck meets	with the	specifie	ed stand	ards for	
	and integrated in plant DCS in such a way that amended from ESP exceeds	the report period	ı. Meas	e rerer po	irit 1.						
	the specified standard prescribed in the										
	Environment (protection) Rules 1986 as										
	amended from time to time, utilization										
	of boiler capacity shall so that flue gas										
	emission from the stack meets with the										

	specified standards or boiler shall shut	
	down totally.	
19.	Third party monitoring of the functioning of ESP along with efficiency shall be carried out once in a year through a reputed institute / organization.	Complied. The monitoring has been carried out and found satisfactory.
20.	Lime stone injection technology shall be adopted to control SO2 and it shall be ensured that SO2 levels in the ambient air do not exceed the prescribed standards.	Complied . A system to inject lime stone powder and meeting with the prescribed norms of SO_2 is already been installed and interconnected with the online emission monitoring system. SO_2 levels in the ambient air did not exceed the prescribed standards for the report period. Please refer point 30.
21.	The company shall prepare schedule and carry out regular preventive maintenance of mechanical and electrical parts of ESPS and assign responsibility of preventive maintenance to the senior officer of the company.	Complied. Our company is ISO 14001 certified company and regular preventive maintenance of all the critical equipment is a part of our system.
22.	Diesel to the tune of 300 Lit/hr shall be used as a fuel in stand -by D. G. Set (1500 KVA)	Complied. The diesel consumption for the report period is zero.
23.	The flue gas emission from DG set shall be dispersed through adequate stack height as per CPCB standards. At no time the emissions levels shall go beyond the stipulated standards.	Complied. DG set run for emergency start up only.
	Acoustic enclosure be provided to DG seta to mitigate the noise pollution.	Complied. Acoustic enclosure provided to DG set.
24.	Online monitoring system shall be installed to monitor the SOx, NOx and SPM in the flue gas stack. An arrangement shall also be done for reflecting the online monitoring result on the company's server, which can be	Complied. Online monitoring system for SPM, SOx and NOx is already been made and connected to CPCB server. Complied.
25.	assessable by the constructed. Adequate storage facility for the fly ash in terms of closed silos shall be provided at site. No pond shall be constructed.	Complied . Two silos of 330 m³ capacity for fly ash and one silo of 45 m³ for bottom ash are provided.
26.	Handling of the fly ash shall be through a closed pneumatic system.	Complied. It is already provided.
27.	Ash shall be handled only in dry state.	Complied.
28.	The unit shall strictly comply with the fly ash Notification under the EPA and it shall ensure that there is 100% utilization of fly ash to be generated from the unit.	Complied. Fly ash generated is utilized 100%. Data given in Table 2. (Pl. see pg. no. 14)
29	The fugitive emission in the work zone environment shall be monitored. The emission shall confirm to the standards prescribed by the concerned authorities from time to time (e.g. Directors of Industrial Safety & Health) Following Indicative guidelines shall be also be followed to reduce the fugitive emission.	Complied.

	All banding 0 turns and of and 0 lineits	Committed All handings 0 types and of soul 0 limits is along the soul of soul
	All handing & transport of coal & Lignite	Complied. All handing & transport of coal & Lignite is done through covered coal
	shall be exercised through covered coal conveyors only.	conveyors only.
	Enclosure shall be provided at coal /	Complied Englacure provided
	Lignite loading and uploading	Complied. Enclosure provided.
	operations.	
	Water shall be sprinkled on coal /	Complied. Water regularly sprinkled on coal / Lignite stock piles to retain some
	Lignite stock piles periodically to retain	moisture in top layer and also while compacting to reduce the fugitive emission.
	some moisture in top layer and also	Thoistare in top layer and also write compacting to reduce the ragitive emission.
	while compacting to reduce the fugitive	
	emission.	
	All transfer points shall be fully	Complied. All transfer points are fully enclosed.
	enclosed.	Complication and the family endeded.
	Adequate dust suppression / extraction	Complied. Adequate dust extraction system at crusher house is provided While
	system at crusher house as well as for	dust suppression system the coal/ Lignite unloading areas to abate dust nuisance.
	the coal/ Lignite stock yard and other	J J
	vulnerable areas shall be provided to	
	abate dust nuisance.	
	Accumulated coal dust / fly ash on the	Complied. Coal dust / Fly ash is being cleaned regularly. Coal dust and fine particles
	ground and surfaces shall be removed /	are being loaded to coal handling plant after spraying water on it.
	swept regularly and water the area	
	after sweeping.	
	Internal roads shall be either concreted	Complied . Paver blocks have been provided in the ESP and some internal area of
	or asphalted or paved properly to	power plant. Concrete Road have been built in the surrounding area of Power Plant
	reduce the fugitive emission during	to reduce fugitive emissions during vehicle movement.
	vehicular movement.	
	Air borne dust shall be controlled with	Complied. Waste water of neutralization pit is being used for dust suppression in
	water sprinkles at suitable locations in	Coal plant and Fly ash handling units. Covered trucks / closed bulkers are being
	the plant.	utilized for handling coal and fly ash.
	Coal / Lignite shall be transported	
	through covered trucks only whereas	
	fly ash shall be transported through	
	closed trucks only.	
	A green belt shall be developed all	Complied . Proper plantation is done all around the plant boundary and also the
	around the plant boundary and also the	roads to mitigate fugitive & transport dust emission.
	roads to mitigate fugitive & transport	
30	dust emission.	Complied Ma are regularly monitoring DM2 F. DM10 NOv. CO2 in ambient air and
30.	Regular Monitoring of ground level concentration of PM2.5, PM10, NOx,	Complied. We are regularly monitoring PM2.5, PM10, NOx, SO2 in ambient air and
	SO2 and Hg shall in the impact zone	will be continued monitoring. Ambient Air data given in Table 3 . (Pl. see pg. no. 14)
	and its records shall be maintained.	¹ 7
	Ambient air quality levels shall not	Complied. The Location of ambient air quality monitoring stations had been
	exceed the standards stipulated by	decided in consultation with GPCB so that at least one station is installed in the up
	GPCB.	wind and downwind direction as well as where maximum ground level
	GI CD.	concentration are anticipated. This also covers the impact, if any, of the project
		plant. The same had been shown to authority like SPCB, CPCB & MoEF during their
		visit to our factory.
		visit to our ractory.
		The maximum values during the compliance period confirms that at no time the
		emission level went beyond the stipulated standards. Parameter wise summary is
		given below:

Station	Parameter	Limit microgm/NM ³	Values for the period Nov 18- Apr 19			
			Min.	Max.	Avg.	
66 KV	RSPM (PM2.5)	60	27	40	31.83	
	PM10	100	31.1	50	35.97	
	SO2	80	7.3	9.2	8.17	
	NOx	80	6.8	8.9	8.05	
	Ammonia	850	ND	9	1.5	
	HCI	200	ND	ND	ND	
Opposite Shed D	RSPM (PM2.5)	60	29	45	36.83	
	PM10	100	35	50	42.00	
	SO2	80	9.4	12.1	10.35	
	NOx	80	8.7	10.1	9.22	
	Ammonia	850	ND	ND	ND	
	HCI	200	ND	ND	ND	
Near West site	RSPM (PM2.5)	60	28	35	30.83	
ETP	PM10	100	39	50	44.00	
	SO2	80	8.5	10.1	9.07	
	NOx	80	8.5	9.5	8.82	
	Ammonia	850	ND	ND	ND	
	HCI	200	ND	ND	ND	
Near North ETP	RSPM (PM2.5)	60	26	38	31.17	
	PM10	100	38	60	44.00	
	S02	80	9.5	10.4	10.10	
	NOx	80	9.1	9.8	9.48	
	Ammonia	850	ND	ND	ND	
	HCI	200	ND	ND	ND	
TSDF	RSPM (PM2.5)	60	33	55	42.33	
	PM10	100	33	55	42.83	
	SO2	80	8.4	9.9	9.08	
	NOx	80	7.9	9.1	8.45	
	Ammonia	850	ND	ND	ND	
	HCI	200	-			
Main Guest	RSPM (PM2.5)	60	ND	ND	ND	
House	PM10	100	27	35	29.17	
	SO2	80	39	50	43.17	
			9.5	10.1	9.83	
	NOx	80	13.4	16.5	14.57	
	Ammonia	850	ND	ND	ND	
	HCI	200	ND	ND	ND	
Wyeth Colony	RSPM (PM2.5)	60	24	30	26.67	
	PM10	100	39	46	43.33	

			SO2	80	7.5	0.0	0.22
			NOx	80	7.5	9.3	8.33
			Ammonia	850	11.8	13.5	12.45
					ND	ND	ND
			HCI	200	ND	ND	ND
		Gram panchayat	RSPM (PM2.5)	60	32	40	35.17
		Tidii	PM10	100	35	45	40.17
			SO2	80	8.3	9.3	8.85
			NOx	80	12.5	13.2	12.83
			Ammonia	850	ND	ND	ND
			HCI	200	ND	ND	ND
		Main office, North	RSPM (PM2.5)	60	25	30	26.83
		site	PM10	100	44	55	49.00
			S02	80	8.7	9.2	8.93
		-	NOx	80	12.6	13.2	12.87
			Ammonia	850	ND	ND	ND
			HCI	200	ND	ND	ND
		Haria water tank	RSPM (PM2.5)	60	27	36	31.33
			PM10	100	31.3	40.5	34.87
			S02	80	7.4	8.5	7.83
			NOx	80	7.9	9.5	8.48
			Ammonia	850	ND	ND	ND
			HCI	200	ND	ND	ND
	If at any stage these levels are found to exceed the prescribed limits necessary additional control measures shall be taken be decided in consultation with the GPCB. A.4 SOLID/ HAZARDOUS WASTE:	Complied. No such	n case rouna.				
31.	The company shall strictly comply with the rules and regulations with regards to handling and disposal of Hazardous waste in accordance from time to time.	Complied.					
	Authorization from the GPCB shall be obtained for collection / treatment/storage disposal of hazardous waste.	Complied. We have					
32.	Hazardous waste sludge shall be packed stored in separate designated hazardous waste storage facility with impervious bottom and leachate collection facility, before its disposal.						
33.	The used oil shall be sold to only to the						
24	registered recyclers / refiners. The discarded containers / barrels	& Chemicals. Complied. No bags / liners are being utilized for Power Plant.					
34.	/bags/ liners shall be sold only to the registered recycler.	Complied. No bag	s / iiners are bein	g utilizea for Powe	er Plant.		
35.	For storage of fly ash closed silos of adequate capacity shall be provided.	Complied. Fly as installed. A separa					have been

	No ash pond shall be construed in the project.	Complied. No ash pond is construed in the project.
36.	The fly ash shall be supplied to the manufacturers of fly ash based products such as cement, concrete blocks, bricks, panels, etc.	Complied. Fly ash is being given to Cement and Bricks manufacturers and also being used for our own Bricks Manufacturing unit.
	The unit shall strictly comply with the Fly Ash Notification under EPA and it shall be ensured that there is 100% utilization of fly ash to be generated from the unit.	Complied . We are complying with the Fly Ash Notification under EPA and there is 100% utilization of fly ash being generated from the unit. Please refer point 28.
37.	All possible efforts shall be made for co- processing of the Hazardous waste prior to disposal into TSDF/CHWIF.	Complied.
38.	A.5 SAFETY: The project management shall strictly	Complied.
36.	comply with the provisions made in the Factories Act, 1948 as well as manufacturer, storage and Impact of Hazardous chemicals Rules 1989 as amended in 2000 for handling of hazardous chemicals.	Compiled.
39.	Necessary precautions like continuous monitoring of hot spot (ignite lignite) using temperature detection systems water sprinklers, avoiding stacking of lignite near stream pipeline etc shall be made for storing lignite to prevent fire hazard.	Complied . Lignite is usually used on the same day of its receiving at site as far as possible. Lignite is not being stored for not more than 3-4 Days. However, Water spray and fire hydrant system is available for the fuel storage sheds.
40.	All the risk mitigation measures, general & specific recommendations mentioned in risk Assessments Report shall be implemented.	Complied. All recommendations implemented.
41.	A well designed fire hydrants system shall be installed as per the prevailing standards.	Complied. Fire hydrant system is adequate and as per standards.
42.	Personal protective Equipment shall be provided to worker and its usage shall be ensured and supervised.	Complied . PPEs like nose masks, safety goggles, chemical resistive aprons, fire proof apron, Hand gloves, safety helmet, welding goggles, ear mugs, safety shoes etc are provided to the workers and utilization of the PPEs is followed strictly in Power Plant.
43.	First Aid Box and required antidotes for the chemical used in the unit shall be readily available in adequate quantity at all the times.	Complied. First aid box are kept in each plant and at strategic locations whereas antidotes are kept in the medical Centre.
44.	Occupational health surveillance of the workers shall be done its records shall be maintained. Pre - employment and periodical medical examination for all the worker shall be undertaken as per the Factories Act & rules.	Complied. Being done on regular basis as per the Factories Act & rules.
45.	Flameproof fittings shall be provided at the proposed power plant.	Complied. Flame proof fittings are provided.
46.	Adequate firefighting facilities shall be provided at the proposed power plant.	Complied. Firefighting facilities are adequate.
47.	Proper ventilation shall be provide in the work area.	Complied. Proper ventilation provided.

48.	All transporting routes within the	Complied. The roads inside factory are either of cement concrete or Bitumen
٦٥.	factory premise shall have paved roads	concrete.
	to minimize splashes and spillages.	
49.	The project management shall prepare a details Disaster management plan (DMP) for the project as the guidelines from Directors of Industrial safety and Health.	Complied. Detailed disaster management plan is already prepared.
	A.6 NOISE:	
50.	To minimize the noise pollution the following noise control measures shall be implemented. Selection of any new plant equipment shall be made with specifications of low	Complied. Complied. All steam vents have attached with Silencers. Low noise level is considered as one of the prime specifications while selecting new machines in
	levels.	Power plant. For Example, Replacement of reciprocating type noisy air compressors by low noise emitting screw air compressors.
	Manufacturer / supplier of major noise generating machines / equipment like air compressor. Feeder pumps, turbine generators, etc shall be instructed to make required design modifications wherever possible regulatory norms with respect to noise generation for individual units.	Complied.
	Regular maintenance of machinery and vehicles shall be undertaken to reduce the noise impact.	Complied.
	Noise suppression measures such as enclosures, buffers and / or protective measures shall be provided.	Complied . Acoustic enclosures are provided on DG sets. Silencers have been provided on main steam vent valves of Boilers.
	Employees shall be provided with ear protection measures like earplugs or earmuffs.	Complied.
	Proper oiling lubrication and preventive maintenance shall be carried out of the machineries and equipment to reduce noise generation.	Complied.
	Construction equipment generating minimum noise vibration shall be chosen.	Complied.
	Ear plugs and / muffs shall be made compulsory for the construction workers working near the noise generating activities / machines / equipment.	Complied.
	Vehicles and construction equipment with internal combustion engines without proper silencer shall not be allowed to operate.	Complied.
	Construction equipment meeting the norms specified by EP Act, 1986 shall only be used.	Complied.
	Noise control equipment and baffling shall be employed on generators especially when they are operated near the residential and sensitive areas.	Complied.

	Noise levels shall be reduced by the use of adequate mufflers on all motorized	Comp	lied.						
	equipment								
51.	The overall noise level in and around	Comp	lied. Silencers, acoustic hood	are provided.					
	the plant area shall be kept well within								
	the prescribed standard by providing noise control measures including								
	acoustic insulation, hoods, silencers,								
	enclosures, vibration, dampers etc.on								
	all sources of noise generation. The ambient noise levels shall confirm	Comm	lied. The ambient and work	ما مونوم مونوم ام	val aarafii	to ti	as atama		
	to the standards prescribed under the Environment (protection) Act and Rules. Workplace noise levels for workers shall be as per the factories Act and	prescr given	ribed under EPA. The same is in Table 4 and 5 . (Pl. see pg. r	being regularly no. 15, 16)	/ monitor	ed and it	s details		
	Rules.	noise below	emission level went beyond ::	the stipulated					
			level monitoring data (Day Ti		Malara	£4l	ta al Nias s		
		Sr. No.	Location	Permissible Limits, dBA	18- Apı	for the per r 19	ioa ivov		
				75	Min.	Max.	Avg.		
		1	Near Main guest house	75	63.6	68.9	65.3		
		2	Near TSDF	75	63.2	66.2	64.1		
		3	At Wyeth Colony	75	60.4	66.8	64.1		
		4	Gram Panchayat Hall	75	61.3	69.5	63.8		
		5	Near Main Office North site	75	65.5	67.9	66.7		
		6	ETP North site	75	66.5	70.2	68.0		
		7	Opposite shed D	75	64.7	68.9	66.3		
		8	ETP West site	75	65.4	68.7	67.2		
		9	Water tank Haria road	75	62.5	64.9	63.7		
		10	Near 66KVA substation	75	64.3	67.8	65.9		
		Noise Sr.	level monitoring data (Night 7	Fime) Permissible	Value	s for the pe	ariod Nov		
		No.	Location	Limits, dBA	18- A _l		21104 1404		
				70	Min.	Max.	Avg.		
		1	Near Main guest house	70	53.1	56.1	55.0		
		2	Near TSDF	70	56.4	60.3	58.3		
		3	At Wyeth Colony	70	50.5	52.5	51.7		
		4	Gram Panchayat Hall	70	52.1	55.1	53.7		
		5	Near Main Office North site	70	55.7	58.9	57.3		
		6	ETP North site	70	52.2	55.1	53.6		
		7	Opposite shed D	70	53.8	55.9	54.8		
		8	ETP West site	70	54.7	56.3	55.6		
		9	Water tank Haria road	70	53.4	55.8	54.7		
		10	Near 66KVA substation	70	51.7	- 0.0	 		

		C P. I.C.
52.	The unit shall develop green belt in at	Complied. Green belt is developed and we planted more than 50000 plants every
	least 68000 sq.m area within the	year.
	premises. Green belt shall comprises of	
	rows of varying height tall native trees	
	with thick foliage in the periphery of the	
	factory premises.	
53.	The unit shall also take up adequate	Complied. We plant more than 50000 plants every year on road sides and other
	plantation at suitable open Land on	open areas in nearby villages or schools in consultation with the Gram panchayat.
	road sides and other open areas in	
	nearby villages or schools in	
	consultation with the Gram panchayat /	
	GPCB and submit an action plan for the	
	same for next three years to the GPCB.	
	B.OTHER CONDITIONS:	
54.	In the event of failure of any pollution	Complied . No such case during the repot period. However, if such case happens
	control system adopted by the unit, the	we ensure to close down the unit.
	unit shall be safely closed down and	
	shall not be restarted until the desired	
	efficiency of the control equipment has	
	been achieved.	
55.	All the recommendation , mitigation	Complied.
00.	measures ,environments protection	
	measures and safeguard proposed in	
	the EIA report of the project prepared	
	by M/s; Eco chem Sales & Service, surat	
	& submitted vide letter no NIL dated	
	03/11/2015 and commitments made	
	during presentation before SEAC,	
	proposed in the EIA report shall be	
	strictly adhered to in letter and spirit.	
56.	All the recommendation of CREP	Complied. CREP guidelines is being followed.
	guidelines as may be applicable from	
	time to time shall be following	
	vigorously.	
57.	A separate environment management	Complied. Implementation of stipulated environmental safeguards were ensured
	cell with qualified staff shall be set up	by the Company's SHE department.
	for implementation of stipulated	
	environmental safeguards.	
58.	The project authorities must strictly	Complied.
	adhere to stipulations made by the	
	Gujarat Pollution Control Board (GPCB),	
	state government and statutory	
	authority.	
59.	No further expansion or modification in	Complied. No further expansion took place.
55.	the plant likely to cause environmental	Complica. To faither expansion cook place.
	impacts shall be carried out without	
	obtaining prior Environment Clearance	
	from the concerned authority.	Nietad
60.	The above conditions will be enforced,	Noted.
	inter-alla under the provisions of water	
	(prevention &Control or pollution) Act,	
	1974, Air (prevention & Control of	
	pollution) Act, 1981, the Environment	
	(Protection) Act, 1986, Hazardous &	
	other wastes (Management and Trans	
	boundary Movements) Rules 2016 and	
1	, , , , , , , , , , , , , , , , , , , ,	

	the public lightly incurrence Act 1001		
	the public liability insurance Act, 1991		
	along with their amendments and rules.		
61.	The project proponent shall comply all	Complied.	
	the conditions mentioned in ' The		
	Companies (Corporate Social		
	Responsibility Policy) Rules, 2014 and		
	its amendments from time to time in a		
	letter and spirit.		
62.	The project proponent shall ensure that	Complied. All the recommendations sug	
	unit complies with all the environment	assessments study repot as well as propos	ed by us have been implemented.
	protection measures, risk mitigation		
	measures and safeguards		
	recommended in the EMP report and		
	Risk .Assessments study repot as well		
	as proposed by project proponent.		
3.	The project authorities shall earmark	Complied.	
	adequate funds to implement the	'	
	conditions stipulated by SEIAA as	EMP measures are implemented.	
	GPCB along with the implementation	A separate budget is being allocated evo	erv vear to comply with all the legal
	scheduled for all the conditions	requirement stipulated by SPCB, CPCB &	
	stipulated herein. The funds so	control systems and facilities. Total expend	
	provided shall not be diverted for any	EMS implementation:	3
	other purpose.	Details	Expense in Lac Rs.
		Site development	25
		Civil work	2000
		Plant and machinery	6049
		Environment management system	984
		Greenbelt development	10
		Other assets Contingency	200
		Establishment charges	15
		Project management and consultancy	50
		ldc and financial charges	350
		Total	9683
64.	The applicant shall inform the public	Complied. The advertisement given in news	
	that the project has been accorded	the Panchayat, Zila parishad, District Indus	trial Centre on 11.11.2016.
	environmental clearance by the SEIAA		
	and that the copies of the clearance		
	letter are available with the GPCB and		
	May also be seen at website of SEIAA /		
	SEAC/ GPCB.		
	This shall be advertised within seven	Complied. The advertisement copy already:	submitted vide our letter dated 27.1.17.
	days from the date of the clearance		
	letter, in at least two local newspapers		
	that are widely circulated in the region,		
	one of which shall be in the Gujarat		
	language and the other in English.		
	A copy each of the same shall be	Complied. The advertisement copy already:	submitted vide our letter dated 27.1.17.
	forwarded to the concerned Regional		
	office of the Ministry.		
65.	The project proponent shall also comply	Complied. No additional conditions so far	imposed by the SEAC or the SEIAA or
	with additional conditions that may be	any other competent authority for the purpo	
	imposed by the SEAC or the SEIAA or	management.	
	any other competent authority for the	9	
	purpose of the environmental		
	protection and management.		
L	protection and management.		

66.	It shall be mandatory for the project	Complied. We regularly submit the half-yearly compliance report.
33.	management to submit half-yearly	Complical Transgalary cashin are train yourly compliance reports
	compliance report in respect of the	
	stipulated prior environmental	
	clearance terms and condition in hard	
	and soft copies to the regulatory	
	authority concerned on 1st June and 1st	
	December of each calendar year.	
67.	Concealing factual data or submission	Noted.
	of false / fabricated data and failure to	
	comply with any of conditions	
	mentioned above may result in	
	withdrawal of this clearance and	
	attract action under the provisions of	
	Environment (Protection) Act, 1986.	
68.	The project authorities shall also	Complied.
	adhere to the stipulations made by the	·
	Gujarat Pollution Control Board.	
69.	The SEIAA may revoke or suspend the	Noted.
	clearance. If implementation of any of	
	the above conditions is not found	
	satisfactory.	
70.	The company in a time bound manner	Noted.
	shall implement these conditions. The	
	SEIAA reserves the stipulate additional	
	conditions, if the same is found	
	necessary.	
71.	The project authorities shall inform the	Complied.
	GPCB, Regional Office of MoEF and	
	SEIAA about the date of financial	
	closure and final approval of the project	
	by the concerned authorities and the	
	date of start of the project.	
72.	This environmental clearance is valid	Noted.
	for seven years from the date of issue.	
73.	Any appeal against this environmental	Noted.
	clearance shall lie with the National	
	Green Tribunal, if preferred, within a	
	period of 30 day as prescribed under	
	section 16 of the National Green	
	Tribunal Act, 2010.	

Table 1 : Stack Result

No.	Parameter	Standard values as per CCA	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19
1	SPM	50 mg/Nm3	38	35	38	41	49	48
2	SO2	600 mg/Nm3	88	85	88	91	97	105
3	NOx	300 mg/Nm3	73	71	75	79	85	95
4	Mercury	0.03 mg/Nm3	ND	ND	ND	ND	ND	ND

Table 2: Fly ash generation and disposal details:

Fly Ash	Unit	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19
Generation	MT	2456.235	940.178	3421.56	4445.89	4488.135	3922.589
Disposal	MT	2456.235	940.178	3421.56	4445.89	4488.135	3922.589

Table 3: Ambient air monitoring:

Station	Parameter	Limit microgm/NM ³	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19
	PM 2.5	60	29	27	29	31	35	40
	PM10	100	31.1	32.5	34.8	35.2	32.2	50
CC I//	SO2	80	7.6	7.3	7.9	8.5	8.5	9.2
66 KV	NOx	80	6.8	7.4	7.9	8.5	8.9	8.8
	Ammonia	850	9	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	29	32	35	38	42	45
	PM10	100	35	38	39	42	48	50
Opposite	SO2	80	9.4	9.5	9.8	10.2	11.1	12.1
Shed D	NOx	80	8.8	8.9	8.7	9.2	9.6	10.1
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	28	29	31	30	32	35
	PM10	100	39	42	45	43	45	50
Near West site	SO2	80	8.5	8.7	9.1	8.8	9.2	10.1
ETP	NOx	80	8.6	8.5	8.6	8.8	8.9	9.5
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	26	28	29	31	35	38
	PM10	100	38	41	40	40	45	60
N. N. J. ETD	SO2	80	10.4	10.3	10.2	9.5	9.9	10.3
Near North ETP	NOx	80	9.7	9.4	9.4	9.1	9.5	9.8
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	33	37	38	42	49	55
	PM10	100	33	38	38	45	48	55
TODE	SO2	80	8.6	8.4	8.9	9.2	9.5	9.9
TSDF	NOx	80	7.9	8.3	8.1	8.5	8.8	9.1
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Main Guest House	PM 2.5	60	29	27	28	27	29	35

	PM10	100	39	42	41	43	44	50
	SO2	80	9.8	9.9	10.1	9.9	9.5	9.8
	NOx	80	13.4	13.5	14.1	14.8	15.1	16.5
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	25	27	24	25	29	30
	PM10	100	39	42	43	45	46	45
\\\	SO2	80	7.5	7.7	8.1	8.5	8.9	9.3
Wyeth Colony	NOx	80	11.8	11.9	12.1	12.6	12.8	13.5
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	32	35	32	35	37	40
	PM10	100	35	39	38	41	43	45
Gram panchayat	SO2	80	8.3	8.5	8.9	9.1	9.3	9
hall	NOx	80	12.9	12.7	12.9	13.2	12.5	12.8
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	26	28	25	27	25	30
	PM10	100	44	48	47	49	51	55
Main office, North	SO2	80	8.9	8.7	8.9	9.2	8.8	9.1
site	NOx	80	12.6	12.8	13.2	12.8	12.7	13.1
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	29	27	29	32	36	35
	PM10	100	33.6	31.3	33.2	34.9	35.7	40.5
Hamia	SO2	80	7.9	7.9	7.4	7.5	7.8	8.5
Haria water tank	NOx	80	8.4	7.9	8.2	8.5	8.4	9.5
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND

Table 4: Noise level monitoring data (Day Time)

Sr. No.	Location				Permissible Limits, dBA			
		Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	75
1	Near Main guest house	63.6	63.8	64.2	65.2	65.9	68.9	75
2	Near TSDF	63.8	63.3	63.8	64.3	63.2	66.2	75
3	At Wyeth Colony	63.6	63.9	64.5	65.3	66.8	60.4	75
4	Gram Panchayat Hall	61.9	61.3	62.4	63.5	64.2	69.5	75
5	Near Main Office North site	65.5	65.8	66.9	67.8	67.9	66.5	75
6	ETP North site	66.5	66.7	67.3	68.3	69.1	70.2	75
7	Opposite shed D	64.7	64.9	65.4	66.5	67.2	68.9	75
8	ETP West site	65.9	65.4	66.8	67.9	68.5	68.7	75
9	Water tank Haria road	62.9	62.5	63.1	64.2	64.9	64.5	75
10	Near 66KVA substation	64.3	64.5	65.3	66.3	67.1	67.8	75

Table 5: Noise level monitoring data (Night Time)

Sr. No.	Location	Noise L	Noise Level, dBA					Permissible Limits, dBA
		Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	70
1	Near Main guest house	53.1	53.5	55.6	56.1	55.7	56.1	70
2	Near TSDF	56.9	56.4	57.8	58.3	60.1	60.3	70
3	At Wyeth Colony	50.8	50.5	51.3	52.4	52.5	52.4	70
4	Gram Panchayat Hall	52.7	52.1	53.4	54.2	54.7	55.1	70
5	Near Main Office North site	55.7	55.9	56.8	57.8	58.5	58.9	70
6	ETP North site	52.5	52.2	53.7	54.1	54	55.1	70
7	Opposite shed D	53.8	53.8	54.9	55.2	55.3	55.9	70
8	ETP West site	54.8	54.7	55.8	55.9	56.2	56.3	70
9	Water tank Haria road	53.7	53.4	54.9	55.2	55.8	55.2	70
10	Near 66KVA substation	51.8	51.7	53.7	54.8	55.1	56.2	70

"PRELIMINARY STUDY FOR GROUND WATER QUALITY & SOIL"

For

ATUL LIMITED
P.O ATUL-396 020,
DIST: - VALSAD.

DECEMBER-2018

Prepared By:

Pollucon Laboratories Pvt. Ltd.

Plot No.5/6, "Pollucon House",
Opp. Balaji Industrial Society, Old Shantinath Silk mill Lane,
Near Gayatri farsan Mart, Navjivan circle,
Udhana Magdalla Road, Surat 3905007.
PHONE/FAX: [0261] 2455751, 2601224, 2601106

Web: www.polluconlab.com E- mail: pollucon@gmail.com

"PRELIMINARY STUDY FOR GROUND WATER QUALITY & SOIL"

For

ATUL LIMITED
P.O. ATUL-396 020,
DIST: - VALSAD

DECEMBER-2018

For and on behalf of Pollucon Laboratories Pvt. Ltd., Surat

Approved by : Dr. Arun Kumar Bajpai

Signed : Jenney

Designation : Lab Manager (Q)

Year : December 2018

This report is prepared by Pollucon Laboratories Pvt. Ltd. with all reasonable skills, care and diligence, incorporating our General Terms and Conditions of Business and taking account of the resources devoted.

CONTENT

SR. NO.	TITLE	PAGE NO.
1	INTRODUCTION OF POLLUCON LABORATORIES PVT. LTD.	04
1.1	SAMPLING AND ANALYTICAL METHODS FOR GROUND WATER	06
1.2	SAMPLING AND ANALYTICAL METHODS FOR SOIL	07
2	INTRODUCTION OF ATUL LTD.	08
3	IMPORTANCE OF UNDER GROUND WATER	10
4	QA/QC PROCEDURE	12
4.2	CHECKLIST FOR SAMPLE ANALYSIS AND CHAIN OF CUSTODY	13
4.3	LABORATORY ANALYSIS	13
4.4	CHECK LIST FOR SAMPLE INTEGRITY	14
4.5	CHECK LIST FOR SAMPLE ANALYSIS	14
5	SCOPE OF WORK SAMPLING, ANALYSIS & RESULT	15
5.1	SAMPLING LOCATIONS FOR GROUND WATER	17
5.2	SAMPLING LOCATIONS FOR SOIL	18
6	WATER SAMPLING TEST REPORT	19
7	SOIL SAMPLING TEST REPORT	42
8	CONCLUSION	48

LIST OF ANNEXURE

SR. NO.	TITLE
I	CREDENTIALS OF POLLUCON LABORATORIES PVT. LTD.
А	NATIONAL ACCREDITATION BOARD FOR TESTING AND CALIBRATION LABORATORIES
В	ISO 9001:2008
С	ISO 14001:2004
D	OHSAS 18001:2007
E	GUJARAT POLLUTION CONTROL BOARD ENVIRONMENTAL AUDIT RECOGNITION

1. INTRODUCTION

OF
POLLUCON LABORATORIES PVT.
LTD.

1. Introduction

Pollucon Laboratories Pvt. Ltd., Plot No.5/6 "Pollucon House", Opp. Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India have been in the analytical field since long time and have adequate expertise, trained man power and required infrastructure to render the uninterrupted service; Backed by a dedicated team we intend to give you a comprehensive analytical service with statutory interpretation and timely information vital for addressing the regulatory compliance.

We have so far a proven track record for successfully giving such services to various power plants, chemical factories and large scale set up and always met their demand for timely and effectively attendance to address the compliance solutions.

Apart from such set up as stated above following are our credential:

Laboratories are recognized by Ministry of Environment & Forest, Government of India, New Delhi under the EPA- article 12 A. along with the recognition as Environmental Auditors under the Honorable High Court; Gujarat Orders.

Laboratory set up is having international recognition from NABL (National accreditation board for Laboratories) under the ministry of Science & Technology as per ISO 17025:2005 for the relevant scope.

Entire administration and operations of the unit is as per ISO 9001:2008 quality systems and is certified by TUV consultants. (OHSAS 18000 & ISO 14001).

1.1 Sampling and Analytical Methods For Groundwater

Sampling and analytical methods are the important criteria for any tests and analysis as the accuracy of test results are dependent on the test methods selected for sampling and analysis besides the experience of the personnel. We have adopted IS (Indian Standards Methods), USDA (United States Department of Agriculture) & other standard methods for sampling and analysis.

Test Method:

SR. NO.	PARAMETERS	TEST METHOD
1	Colour	IS3025(P-4)83Re.02
2	рН	IS3025(P-11)83Re.02
3	Suspended Solids	IS3025(P-17)84Re.02
4	Total Dissolved Solids	IS3025(P-16)84Re.02
5	Chloride as Cl	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	IS3025(P-43)92Re.03 4-Aminoantipyrine
	•	method
8	Hexavelant Chromium as Cr ⁺⁶	APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	IS 3025 (P-24)1986
10	Cyanide as CN	APHA(22 nd Edi)4500CN E Colorimetric &
10	Cyamac as civ	Tritemetric
11	COD	APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	IS 3025 (P-44)1993
13	Sulphide as S	APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO₃	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	IS3025(P-23)86Re.03
17	Mercury as Hg	AAS APHA(22ndEdi)3112 B
18	Calcium as Ca	IS3025(P-21)84EDTARe.02
19	Magnesium as Mg	133023(F-21)04EDTANE.U2
20	Fluoride as F	APHA(22 nd Edi) 4500 F D SPANDS Method

1.2 Sampling and Analytical Methods For Soil

Sampling and analytical methods are the important criteria for any tests and analysis as the accuracy of test results are dependent on the test methods selected for sampling and analysis besides the experience of the personnel. We have adopted IS (Indian Standards Methods), USDA (United States Department of Agriculture) & other standard methods for sampling and analysis.

Test Method:

SR. NO.	PARAMETERS	TEST METHOD
1	pH	IS:2720(P-26)1987
2	COD	SOP PLPL
3	Chloride	Soil Manual of India
4	Sulphate	IS:2720(P-27)
5	Organic Matter	IS:2720(P-22)1972
6	Colour	Soil Manual of India
7	Soil Texture	Soil Manual of India
8	Nature Moisture Content	IS:2720(P-2)
9	Bulk Density	Soil Manual of India
10	Mercury	USEPA 3050 B
11	Total Nitrogen	FCO 2018

2.Introduction

Of
ATUL LIMITED
P.O ATUL-396 020,

Introduction

The industrial activities of Atul Ltd. are situated at north bank of River Par in Valsad district. Atul Ltd was founded on September 15, 1947 – exactly a month after Indian independence – by Kasturbhai Lalbhai, an institution builder par excellence and a legendary Indian of his times. The Company was a manifestation of his dream to generate large-scale employment, create wealth in rural India and make the country self-sufficient in its requirements of chemicals. The first Prime Minister of the country, Mr. Jawaharlal Nehru inaugurated Atul Ltd.

Presently Atul Ltd is one of the largest integrated chemical companies of India and amongst the first five manufacturers of its chosen chemicals in the world. Atul is an improvement driven, integrated chemical company serving about 6,000 customers belonging to 31 industries across the world. The Company has established subsidiary companies in the USA (1994), the UK (1996), China (2004), Brazil (2012) and the UAE (2015) to serve its customers and thus enhance breadth and depth of its business.

The company manufactures different products like Dyes and Intermediates, Chloro – alkali products, variety of Pesticides, Bulk Drugs and Pharmaceuticals, Bulk chemicals and intermediates, Different types of Resins etc. products and serves to customers belonging to the Adhesives, Agriculture, Animal Feed, Automobile, Chemical, Composites, Construction, Cosmetic, Defence, Dyestuff, Electrical and Electronics, Flavour, Food, Footwear, Fragrance, Glass, Home Care, Horticulture, Hospitality, Paint and Coatings, Paper, Personal Care, Pharmaceutical, Plastic, Polymer, Rubber, Soap and Detergent, Sports and Leisure, Textile, Tyre and Wind Energy industries. The companyuse variety of raw materials and consumption of fresh water is drawn from Par River.

As a part of Sp. Condition 3 of Environmental Clearance No. SEIAA/GUJ/EC/1(d)/340/2016, Atul Ltd has to submit the detailed study report to Gujarat Pollution Control Board (GPCB) at least once in a year, through the reputed institute or university to assess the impacts on soil and ground water quality. Hence the purpose of the present study is to evaluate soil and groundwater quality in and around Atul.

3. Importance of Ground Water

IMPORTANCE OF GROUND WATER

As ground water is an immensely important resource, However We Affect ground water Quantity Overuse of ground water for urban, rural and industrial uses can cause temporary or permanent declines in the quantity of available ground water. In coastal area fresh water supplies become contaminated with saltwater.

So, the chemistry of water is influenced as it flows downward through soil and the unsaturated zone.

Man-made depression in the ground that collects runoff water and stores it, permitting it to slowly percolate into the soil.

In nature, even the cleanest water contains some impurities that come from the erosion of natural rock formations. Water dissolves and absorbs substances that it touches, including calcium, magnesium, silica, and fluoride from dozens of naturally occurring minerals.

Another related problem concerns changes we make in the recharge rate. When recharge areas are paved with roads and parking lots or are covered with impervious surfaces such as rooftops, water cannot soak into the ground and replenish the ground water supplies. Adding to the problem, paved surfaces collect oils, salts, animal waste, antifreeze, and other pollutants. When it rains, these pollutants become part of the storm water runoff. So it is an important lesson – if we want clean GROUND WATER and surface water, we need to prevent all possible pollutants from being poured on the ground or spilled onto our parking lots and roads.

At low levels, most of these dissolved minerals do not cause health problems, and can even give water an appealing taste. Some of these minerals determine how "soft' or "hard" our water is, and some may produce an unpleasant odor or taste. At higher levels, minerals can be considered contaminants, and like man-made chemicals, can make water unpalatable or unsafe to drink. In some areas, iron, manganese, and sulfate occur locally in objectionable concentrations.

Most GROUND WATER contamination is the result of human activity. Just as our surface freshwater resources (i.e., rivers, wetlands) are influenced by geologic processes and the activities of humans, so too is ground water

4. QA/QC PROCEDURE

4. QA/QC Procedure

4.1 Scope

The scope of QA plan for the above mentioned study includes a minimum of following elements.

- preservation
- Chain of custody
- Laboratory

4.2 Checklist for analysis and chain of custody

Sample Forwarding

After the registration of sample for analysis, the Draft Test report is prepared and handed over to concerned laboratory in-charge and analytical jobs were allotted to specific scientific staff. The concerned analysts have started the analysis after verifying the integrity of the samples.

Chain of Custody

Chain of custody records is maintained for each sample to accompany the sample or set of samples from the point final analysis.

4.3 Laboratory Analysis

Calibration

The Lab Manager has ensured that all the laboratory instruments are calibrated as per calibration plan.

Documentation

All the raw data have been recorded in the raw data register along with the details relating to the sample identification No., date etc.

Lab has also recorded the details relating various quality check procedures or deviation if any.

4.4 Check List for Sample integrity

Item	Yes or No	If No, reasons and Justification for Acceptance			
Is the chain of custody recorded?	Yes	Yes			
Is the chain of custody record filled in properly?	Yes	Yes			
Is the seal on the sample containers intact?	Yes	Yes			
Is the sample received in proper storage condition?	Yes	Yes			
Is the sample quantity adequate for required analysis?	Yes	Yes			
Checked By: Inspected By: Lab Manager					

Note: It is not necessary that this form be filled in for each sample/ sampling point.

It is sufficient if the deviations if any are recorded.

4.5 Check List for Analysis

Item	Yes or No	If No, reasons and Justification for Acceptance
Was the correct method used for the analysis?	Yes	Yes
Were the correct instruments, equipment and apparatus used for the analysis?	Yes	Yes
Was the competence of the analyst deployed for the analysis verified?	Yes	Yes
Were the instruments, equipment and apparatus used precalibrated as required?	Yes	Yes
Was the sample correctly and adequately identified?	Yes	Yes
Were all the raw data properly recorded in the Raw data register?	Yes	Yes
Were the correct equations and units used?	Yes	Yes
Checked By: Inspected By: Lab Manager		

Note: It is not necessary that this form be filled in for each sample/ sampling point.

It is sufficient if the deviations if any are recorded.

QC CHECK - I Check List for Quality Check

Sr. No.	Parameters	Comment (Yes or No)	Remark
1.	Sample container labeled properly?	Yes	Yes
2.	Is Sample Container clean & dry?	Yes	Yes
3.	Are proper storage conditions are maintained?	Yes	Yes
4.	The sample quantity is adequate?	Yes	Yes
5.	Is sample properly identified?	Yes	Yes
6.	Is proper type of container used?	Yes	Yes

Note: It is not necessary that this form be filled in for each sample/ sampling point.

QC CHECK - II

Check List for Quality Check in the lab

Sr. No.	Parameters	Comment (Yes or No)	Remark		
1.	Is the sample details entered into Sample Inventory code?	Yes	Yes		
2.	Sample quantity measured	Yes	Yes		
3.	Glassware is calibrated	Yes	Yes		
4.	Balance / equipments are calibrated	Yes	Yes		
5.	Data entered in the raw data register or not?	Yes	Yes		
Inspected By: Lab Manager					

Note: It is not necessary that this form be filled in for each sample/ sampling point. It is sufficient if the deviations if any are recorded.

5. SCOPE OF WORK SAMPLING, ANALYSIS & RESULT

5. 1 Sampling Locations For Ground Water

Sr. No.	Sampling Location
1	Borewell near Spic 4 plant, North site, Atul Ltd
2	Borewell near R & D Lab, North Site, Atul Ltd
3	Borewell near R & D Lab, west Site, Atul Ltd
4	Borewell opp. East of New Boiler, West Site, Atul Ltd
5	Borewell at west of Old fire pond, West Site, Atul Ltd
6	Borewell at east of Shed A Plant, West Site, Atul Ltd
7	Borewell near Sulfa viofom Plant, East Site, Atul Ltd
8	Borewell near T acid Plant, East Site, Atul Ltd
9	Borewell at north of Caustic soda Plant, East Site, Atul Ltd
10	Borewell near Easter Plant, East Site, Atul Ltd
11	Borewell at Madan Mohan Goushala, Haria village
12	Borewell at down stream of TSDF (Borewell No. 3), Atul Ltd
13	Borewell at Up stream of TSDF (Borewell No. 5), Atul Ltd
14	Borewell near Main gate of GJK colony, Atul Village
15	Borewell near gate of Atik colony, Atul Village
16	Borewell near cross road of Down colony, Atul Village
17	Borewell near Hardner Plant, North Site, Atul Ltd
18	Well at Ishvarbhai's wadi, Haria Village
19	Hand Pump at Mahesh Park, Haria Village
20	Panchayat Hand Pump Near Railway Crossing, Haria Village
21	Hand Pump at First gate, poultry farm road, Parnera village
22	Hand Pump near Derasar, Second gate, Atul Village

^{# :} Detail given by customer

5.2 Sampling Locations For Soil

SR. NO.	SAMPLING LOCATION
1	NEAR BOILER PLANT WEST SITE
2	NEAR ETP PLANT NORTH SIDE
3	NEAR TE UNIT SOUTH SITE
4	NEAR MPP2 PLANT ABL
5	NEAR SULPHURIC PLANT EAST SIDE

^{# :} Detail given by customer

6 WATER SAMPLING TEST REPORT

QR/5.10/01

Customer's Name and Address: Page: 1 of 1

ATUL LIMITED

Test Report No.: PLPL/181220036

P.O ATUL-396 020,

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Sample Receipt Date : 20/12/2018 Lab ID : PLPL/181220036 Packing/Seal : Sealed Test of Parameters : As Per Table

Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019 Identification of Sample : Borewell Near Spic 4 Plant, North Site, Atul Ltd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	2	Max 5	Max 15	IS3025(P-4)83Re.02
2	рН		7.12	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	11			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	478	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	45.98	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	29.15	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	5.70	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	110	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	90	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	34.4	Max 75	Max 200	IC202E/D 21\04FDTAD= 02
19	Magnesium as Mg	mg/L	5.76	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.59	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit : Oil & Grease : < 2 , Phenolic Compound : < 0.005, Hexavelent Chromium as Cr+6 : < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

\$: Not Detected, # : Detail given by customer.

0(-0

QR/5.10/01 Page: 1 of 1

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of

Test Report No.: PLPL/181220037

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell Near R & D Lab, North Site, Atul Ltd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	3	Max 5	Max 15	IS3025(P-4)83Re.02
2	рН		7.31	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	14			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	496	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	52.98	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	66.56	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.66	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	196	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	106	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	48.8	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	17.76	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.48	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

Customer's Name and Address:

TEST REPORT

QR/5.10/01 Page: 1 of 1

ATUL LIMITED
P.O ATUL-396 020,
Issue Date : 21/01/2019
Customer's Ref. : As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell Near R & D Lab, West Site, Atul Ltd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	2	Max 5	Max 15	IS3025(P-4)83Re.02
2	рН		7.15	6.5 – 8.5	-	IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	10	-	-	IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	438	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	42.98	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1	1	APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	32.10	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	4.97	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	164	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	106	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	52.8	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	7.68	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.35	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

\$: Not Detected, # : Detail given by customer.

Customer's Name and Address:

TEST REPORT

QR/5.10/01 Page: 1 of 1

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Test Report No.: PLPL/181220039
Issue Date: 21/01/2019
Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : **Sealed** Test of Parameters : **As Per Table** Date of Starting of Test : **20/12/2018** Date of Completion : **21/01/2019**

Identification of Sample : Borewell opp. East Of New Boiler, West Site, Atul Ltd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	4	Max 5	Max 15	IS3025(P-4)83Re.02
2	рH		7.47	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	3			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1012	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	112	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	97.15	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.51	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	336	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	276	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	76.0	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	35.04	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.82	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit : Oil & Grease : < 2, Phenolic Compound : < 0.005, Hexavelent Chromium as Cr+6 : < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

\$: Not Detected, # : Detail given by customer.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED

P.O ATUL-396 020,

DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220040

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell at West of Old fire pond, West Site, Atul Ltd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.49	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	17			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	568	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	38.98	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	25.78	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.59	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	236	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	156	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	77.6	Max 75	Max 200	IC202E/D 21\04EDTAD
19	Magnesium as Mg	mg/L	10.08	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.13	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

\$: Not Detected, # : Detail given by customer.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED

P.O ATUL-396 020,

DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220041

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell at Eest of Shed A Plant, West Site, Atul Ltd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.56	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	13			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	592	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	31.99	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	27.65	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.68	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	262	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	258	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	67.2	Max 75	Max 200	IC202E/D 21\04EDTAD
19	Magnesium as Mg	mg/L	22.56	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	1.25	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220042

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell near sulfa Viofom Plant, East Site, Atul Ltd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	8.19	6.5 – 8.5	-	IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	9	-	-	IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	312	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	17.99	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5	-	APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	24.25	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.59	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	100	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	94	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	29.6	Max 75	Max 200	IS3025(P-21)84EDTARe.02
19	Magnesium as Mg	mg/L	6.24	Max 30	Max 100	,
20	Fluoride as F	mg/L	0.28	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

\$: Not Detected, #: Detail given by customer.

Customer's Ref. : As Per Quotation

TEST REPORT

QR/5.10/01

Customer's Name and Address: Page: 1 of 1 Test Report No. : PLPL/181220043 **ATUL LIMITED** P.O ATUL-396 020, Issue Date : 21/01/2019 **DIST:VALSAD.**

Description of Sample **Water Sample** Quantity/No. of Samples : 02 Ltr/01

: QC Sampling Date Protocol (Purpose) 20/12/2018

Sample Receipt Date : PLPL/181220043 20/12/2018 Lab ID

Packing/Seal **Test of Parameters** : As Per Table **Sealed** Date of Starting of Test 20/12/2018 **Date of Completion** : 21/01/2019

Borewell near T acid Plant, East Site, Atul Ltd # Identification of Sample

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	3	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.51	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	23			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	386	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	63.98	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	11.87	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.64	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	144	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	64	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	44.8	Max 75	Max 200	IS3025(P-21)84EDTARe.02
19	Magnesium as Mg	mg/L	7.68	Max 30	Max 100	` ,
20	Fluoride as F	mg/L	0.11	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

\$: Not Detected, #: Detail given by customer.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220044

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019
Identification of Sample : Borewell At north of Caustic soda plant, East Site, Atul Ltd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	4	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН		7.32	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	22			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1376	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	135	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	28.68	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.66	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	526	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	524	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	127	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	49.92	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.44	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

QR/5.10/01

Customer's Name and Address: Page: 1 of 1 Test Report No. : PLPL/181220045 **ATUL LIMITED** P.O ATUL-396 020, Issue Date : 21/01/2019 **DIST:VALSAD.** Customer's Ref. : As Per Quotation

Description of Sample **Water Sample** Quantity/No. of Samples : 02 Ltr/01

: QC Sampling Date Protocol (Purpose) 20/12/2018

Sample Receipt Date : PLPL/181220045 20/12/2018 Lab ID

Packing/Seal **Test of Parameters** : As Per Table **Sealed** Date of Starting of Test 20/12/2018 Date of Completion : 21/01/2019

Borewell near Easter plant, East Site, Atul Ltd # Identification of Sample

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН		6.7	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	24			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1894	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	920	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	384	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.55	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	183	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	540	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	56	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	10.32	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	1.05	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

\$: Not Detected, #: Detail given by customer.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED

P.O ATUL-396 020,

DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220046

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell at Madan Mohan Goushala, Haria Village*

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН		7.42	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	11			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1264	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	87.97	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	95.28	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.59	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	556	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	306	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	126	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	57.60	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.58	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

\$: Not Detected, # : Detail given by customer.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220047

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019
Identification of Sample : Borewell at Down stream of TSDF (Borewell No.3),Atul Itd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.14	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	15			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1116	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	139	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	65.12	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	6.52	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	512	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	284	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	153	Max 75	Max 200	IC202E/D 21\04EDTAD
19	Magnesium as Mg	mg/L	30.72	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.25	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220048

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell at Up stream of TSDF (Borewell No.5), Atul Itd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	6.96	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	7			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	892	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	107	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	66.44	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	4.72	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	544	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	210	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	152	Max 75	Max 200	IC202F/D 21\04FDTAD - 02
19	Magnesium as Mg	mg/L	39.36	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.57	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220049

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell Near Main Gate of GJK colony, Atul village #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	6.8	6.5 – 8.5	-	IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	28	-	-	IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	658	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	73.9	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5	-	APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	-		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	23.83	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	5.35	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	290	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	248	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	71.2	Max 75	Max 200	IS3025(P-21)84EDTARe.02
19	Magnesium as Mg	mg/L	26.88	Max 30	Max 100	, ,
20	Fluoride as F	mg/L	< 0.05	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220050

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell near Gate of Atik colony, Atul Village #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.48	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	ND ^{\$}			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	672	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	50.98	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	28.76	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	5.16	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	302	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	266	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	23.52	Max 75	Max 200	IC202E/D 21\04EDTAD
19	Magnesium as Mg	mg/L	81.60	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.18	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED

P.O ATUL-396 020,

DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220051

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell near cross road of Down colony, Atul Village #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	рН		7.93	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	ND ^{\$}			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	688	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	51.98	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	23.65	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.86	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	338	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	288	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	91.20	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	26.40	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.57	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220052

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Borewell near Hardner Plant, North Site, Atul Itd #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	4	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	6.85	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	16			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1910	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	920	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	140	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	10.40	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	190	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	280	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	55.2	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	12.48	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.99	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

Customer's Ref. : As Per Quotation

TEST REPORT

QR/5.10/01

Customer's Name and Address: Page: 1 of 1 Test Report No. : PLPL/181220053 **ATUL LIMITED** P.O ATUL-396 020, Issue Date : 21/01/2019 **DIST:VALSAD.**

Description of Sample **Water Sample** Quantity/No. of Samples : 02 Ltr/01

: QC Sampling Date Protocol (Purpose) 20/12/2018

Sample Receipt Date : PLPL/181220053 20/12/2018 Lab ID

Packing/Seal Test of Parameters : As Per Table **Sealed** Date of Starting of Test 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample Well at Ishvarbhai's wadi, Haria Village#

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	4	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.01	6.5 – 8.5	-	IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	11			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1502	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	319	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5	-	APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1	1	APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	62.07	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	5.86	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	184	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	304	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001	-	AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	52	Max 75	Max 200	IC202E/D 21\04EDTAD
19	Magnesium as Mg	mg/L	12.96	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.35	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

\$: Not Detected, # : Detail given by customer.

QR/5.10/01

Customer's Name and Address: Page: 1 of 1 Test Report No. : PLPL/181220054 **ATUL LIMITED** P.O ATUL-396 020, Issue Date : 21/01/2019 **DIST:VALSAD.** Customer's Ref. : As Per Quotation

Description of Sample Quantity/No. of Samples : 02 Ltr/01 **Water Sample**

: QC Sampling Date Protocol (Purpose) 20/12/2018

Sample Receipt Date : PLPL/181220054 20/12/2018 Lab ID

Packing/Seal Test of Parameters : As Per Table **Sealed** Date of Starting of Test 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample Hand pump at Mahesh Park, Haria Village#

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	3	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.20	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	17			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1444	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	283	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	83.57	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	5.21	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	528	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	428	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	129	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	48.96	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.87	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220055

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019
Identification of Sample : Panchayat hand pump near Railway Crossing, Haria Village#

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.93	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	< 2			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	418	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	17.99	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	1		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	31.87	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	5.36	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	186	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	174	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	39.2	Max 75	Max 200	IC202F/D 21\04FDTAD - 02
19	Magnesium as Mg	mg/L	21.12	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.41	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220056

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019
Identification of Sample : Hand pump at First gate, poultry farm road, parnera village #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	3	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.38	6.5 – 8.5	-	IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	10	-	-	IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1214	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	127	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5	-	APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	< 0.05	-		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	25.78	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	5.55	Max 0.5	-	IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	516	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	344	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	131	Max 75	Max 200	IS3025(P-21)84EDTARe.02
19	Magnesium as Mg	mg/L	45.12	Max 30	Max 100	, ,
20	Fluoride as F	mg/L	0.65	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

QR/5.10/01

Customer's Name and Address:

ATUL LIMITED
P.O ATUL-396 020,
DIST:VALSAD.

Page: 1 of 1

Test Report No.: PLPL/181220057

Issue Date: 21/01/2019

Customer's Ref.: As Per Quotation

Description of Sample : Water Sample Quantity/No. of Samples : 02 Ltr/01

Sampling Date : 20/12/2018 Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 20/12/2018 Date of Completion : 21/01/2019

Identification of Sample : Hand pump near derasar, second gate, Atul village #

RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	4	Max 5	Max 15	IS3025(P-4)83Re.02
2	pН	-	7.19	6.5 – 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	8			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1084	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	119	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	< 0.05			APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	39.63	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}			APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}			IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	5.10	Max 0.5		IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	512	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	388	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	118	Max 75	Max 200	IC202E/D 21\04EDTAD - 02
19	Magnesium as Mg	mg/L	51.84	Max 30	Max 100	IS3025(P-21)84EDTARe.02
20	Fluoride as F	mg/L	0.58	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit: Oil & Grease: < 2, Phenolic Compound: < 0.005, Hexavelent Chromium as Cr+6: < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hq: < 0.001.

\$: Not Detected, # : Detail given by customer.

7. SOIL SAMPLING TEST REPORT

TEST REPORT

Customer's Name and Address : Page: 1 of 1

ATUL LIMITED

P.O ATUL-396 020,

DIST:VALSAD.

Test Report No.: PLPL/181225011

Issue Date : 04/01/2019

Customer's Ref.: Verbal

Description of Sample : Solid Sample Quantity/No. of Samples : 03 Kg/01

Sampling By : Pollucon Lab.pvt.ltd. Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 25/12/2018 Date of Completion : 04/01/2019

Identification of Sample : NEAR BOILER PLANT WEST SITE#

SR. NO.	PARAMETERS	UNIT	RESULT	TEST METHOD
1	pH		7.87	IS:2720(P-26)1987
2	Chloride	mg/kg	34.31	Soil Manual of India
3	Sulphate	mg/kg	161	IS:2720(P-27)
4	Organic Matter	%	0.60	IS:2720(P-22)1972
5	Colour		Brownish	Soil Manual of India
6	Soil Texture		Sandy Loam	Soil Manual of India
7	Moisture Content	%	9.35	IS:2720(P-2)
8	Bulk Density	gm/cm ³	1.18	Soil Manual of India
9	Mercury	mg/kg	Not Detected	USEPA 3050 B
10	Total Nitrogen	%	2.14	FCO 2018

^{# :} Detail given by customer.

Page: 1 of 1

TEST REPORT

Customer's Name and Address:

 ATUL LIMITED
 Test Report No.: PLPL/181225012

 P.O ATUL-396 020,
 Issue Date : 04/01/2019

 DIST:VALSAD.
 Customer's Ref.: Verbal

Description of Sample : Solid Sample Quantity/No. of Samples : 03 Kg/01

Sampling By : Pollucon Lab.pvt.ltd. Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 25/12/2018 Date of Completion : 04/01/2019

Identification of Sample : **NEAR ETP PLANT NORTH SIDE**#

SR. NO.	PARAMETERS	UNIT	RESULT	TEST METHOD
1	pH		7.93	IS:2720(P-26)1987
2	Chloride	mg/kg	43.06	Soil Manual of India
3	Sulphate	mg/kg	121	IS:2720(P-27)
4	Organic Matter	%	1.98	IS:2720(P-22)1972
5	Colour		Dark Brown	Soil Manual of India
6	Soil Texture		Sandy Loam	Soil Manual of India
7	Moisture Content	%	15.40	IS:2720(P-2)
8	Bulk Density	gm/cm ³	1.17	Soil Manual of India
9	Mercury	mg/kg	Not Detected	USEPA 3050 B
10	Total Nitrogen	%	1.14	FCO 2018

^{# :} Detail given by customer.

TEST REPORT

Customer's Name and Address:

ATUL LIMITED

DIST:VALSAD.

P.O ATUL-396 020,

Page: 1 of 1

04/01/2019

Test Report No.: **PLPL/181225013**

Customer's Ref.: Verbal

Issue Date

Description of Sample : Solid Sample Quantity/No. of Samples : 03 Kg/01

Sampling By : Pollucon Lab.pvt.ltd. Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 25/12/2018 Date of Completion : 04/01/2019

Identification of Sample : **NEAR TE UNIT SOUTH SITE**#

SR. NO.	PARAMETERS	UNIT	RESULT	TEST METHOD
1	pH		8.27	IS:2720(P-26)1987
2	Chloride	mg/kg	14.99	Soil Manual of India
3	Sulphate	mg/kg	123	IS:2720(P-27)
4	Organic Matter	%	2.55	IS:2720(P-22)1972
5	Colour		Brown	Soil Manual of India
6	Soil Texture		Sandy Loam	Soil Manual of India
7	Moisture Content	%	23.08	IS:2720(P-2)
8	Bulk Density	gm/cm ³	1.19	Soil Manual of India
9	Mercury	mg/kg	Not Detected	USEPA 3050 B
10	Total Nitrogen	%	1.24	FCO 2018

 $[\]ensuremath{\textit{\#}}$: Detail given by customer.

TEST REPORT

Customer's Name and Address : Page: 1 of 1

ATUL LIMITED

P.O ATUL-396 020,

DIST:VALSAD.

Test Report No.: PLPL/181225014

Issue Date : 04/01/2019

Customer's Ref.: Verbal

Description of Sample : Solid Sample Quantity/No. of Samples : 03 Kg/01

Sampling By : Pollucon Lab.pvt.ltd. Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 25/12/2018 Date of Completion : 04/01/2019

Identification of Sample : NEAR MPP2 PLANT ABL#

SR. NO.	PARAMETERS	UNIT	RESULT	TEST METHOD
1	pH		8.38	IS:2720(P-26)1987
2	Chloride	mg/kg	24.85	Soil Manual of India
3	Sulphate	mg/kg	170	IS:2720(P-27)
4	Organic Matter	%	0.88	IS:2720(P-22)1972
5	Colour		Brown	Soil Manual of India
6	Soil Texture		Sandy Loam	Soil Manual of India
7	Moisture Content	%	19.55	IS:2720(P-2)
8	Bulk Density	gm/cm ³	1.22	Soil Manual of India
9	Mercury	mg/kg	Not Detected	USEPA 3050 B
10	Total Nitrogen	%	1.84	FCO 2018

^{# :} Detail given by customer.

TEST REPORT

Customer's Name and Address : Page: 1 of 1

ATUL LIMITED

P.O ATUL-396 020,

DIST:VALSAD.

Test Report No.: PLPL/181225015

Issue Date : 04/01/2019

Customer's Ref.: Verbal

Description of Sample : Solid Sample Quantity/No. of Samples : 03 Kg/01

Sampling By : Pollucon Lab.pvt.ltd. Protocol (Purpose) : QC

Packing/Seal : Sealed Test of Parameters : As Per Table
Date of Starting of Test : 25/12/2018 Date of Completion : 04/01/2019

Identification of Sample : **NEAR SULPHURIC PLANT EAST SIDE**#

SR. NO.	PARAMETERS	UNIT	RESULT	TEST METHOD
1	pH		8.18	IS:2720(P-26)1987
2	Chloride	mg/kg	184	Soil Manual of India
3	Sulphate	mg/kg	185	IS:2720(P-27)
4	Organic Matter	%	0.097	IS:2720(P-22)1972
5	Colour		Ligh Brown	Soil Manual of India
6	Soil Texture		Sandy Loam	Soil Manual of India
7	Moisture Content	%	12.80	IS:2720(P-2)
8	Bulk Density	gm/cm ³	1.09	Soil Manual of India
9	Mercury	mg/kg	Not Detected	USEPA 3050 B
10	Total Nitrogen	%	0.90	FCO 2018

^{#:} Detail given by customer.

8. CONCLUSION

- All Analyzed Parameters are within the norms of PERMISSIBLE LIMIT IN THE ABSENCE
 OF ALTERNATE SOURCE as per of IS 10500:2012 for drinking water (for parameters
 which limits are specified).
- Soil samples are taken from different location of site and no acidic soil is found at any location.
- Texture of soil is sandy loam at each sites.
- Toxic metal Mercury is not detected at all locations.

ANNEXURE I

CREDENTIALS OF POLLUCON LABORATORIES PVT. LTD.

A. NATIONAL ACCREDITATION BOARD FOR TESTING AND CALIBRATION LABORATORIES

National Accreditation Board for Testing and Calibration Laboratories

(A Constituent Board of Quality Council of India)

CERTIFICATE OF ACCREDITATION

POLLUCON LABORATORIES PVT. LTD.

has been assessed and accredited in accordance with the standard

ISO/IEC 17025:2005

"General Requirements for the Competence of Testing & Calibration Laboratories"

for its facilities at

5/6 "Pollucon House", Old Shantinath Mill Lane, Navjivan Circle, Udhana Magdalla Road, Surat, Gujarat

in the field of

TESTING

Certificate Number

I C-5945 (In lieu of T-0821 & T-0820)

Issue Date

28/05/2017

Valid Until

27/05/2019

This certificate remains valid for the Scope of Accreditation as specified in the annexure subject to continued satisfactory compliance to the above standard & the relevant requirements of NABL. (Le see the scope of accreditation of this laboratory, you may also visit NABL website www.nabl-india.org)

Signed for and on behalf of NABL

N. Venkateswaran Program Director Anil Polio

Anil Relia Chief Executive Officer

B. ISO 9001:2008

C. ISO 14001:2004

ZERTIFIKAT ◆ CERTIFICATE ◆ 認識 證書 ◆ CEPTM Φ M KAT ◆ CERTIFICADO ◆ CERTIFICA TON SIE TUR SUE TUN SUE TW SEE TUN SUE DE TUN SUE

CERTIFICATE

The Certification Body of TÜV SÜD Asia Pacific TÜV SÜD Group

certifies that

Pollucon Laboratories Pvt. Ltd. 444, 544- Belgium Tower, Opp. Linear Bus Stand, Ring Road, Surat - 395 003, Gujarat, INDIA

has established and applies an Environmental Management System for

Providing Environmental Audit,

Consultancy, Monitoring & Testing Services for Water, Air,

Hazardous waste & Food Products

An audit was performed. Report No. 20042248
Proof has been furnished that the requirements
according to

ISO 14001:2004

are fulfilled. The certificate is valid until 2018-03-11 Certificate Registration No. TUV104 07 2153

2015-01-26

Certification Body of TDV SDD Assis Pacific

(LV 8UD Karba Do. + 105 °41.10° Bidg., 650 rolds Dang ritumpseungss-Gu + 150 / SU Secul + Koree

TUV 0

TUV SUB TUV SUI TUV SUB TUV SUB Seub Tuy sub Tuy so Tuy sub Tuy sub 19 sub

D. OHSAS 18001:2007

CERTIFICATE

The Certification Body of TÜV SÜD Asia Pacific TÜV SÜD Group

certifies that

Pollucon Laboratories Pvt. Ltd. 444, 544- Belgium Tower, Opp. Linear Bus Stand, Ring Road, Surat - 395 003, Gujarat, INDIA

has established and applies a Occupational Health and Satety Management System for

Providing Environmental Audit,
Consultancy, Monitoring & Testing Services for Water, Air,
Hazardous waste & Food Products

An audit was performed, Report No. 20042248

Proof has been furnished that the requirements according to

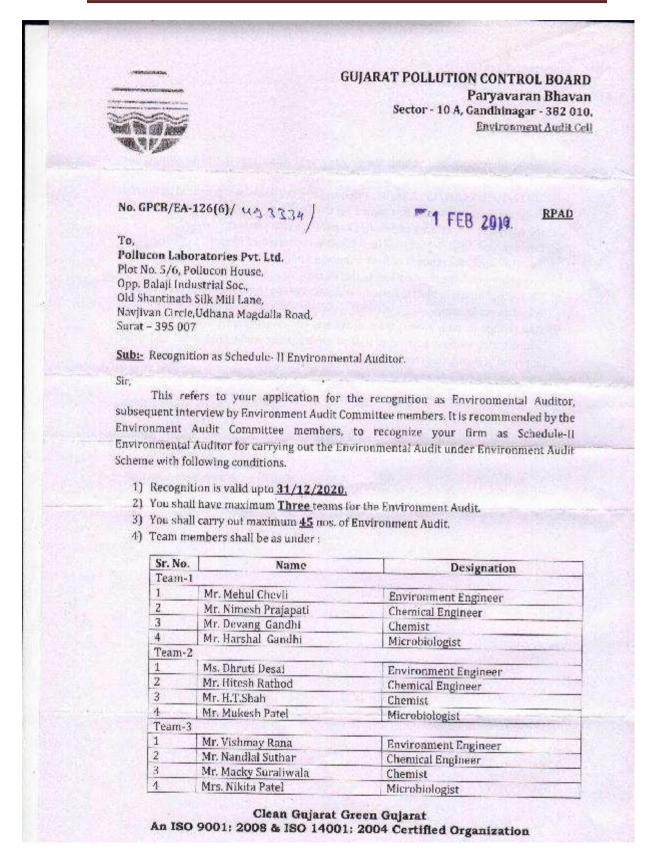
OHSAS 18001:2007

are fulfilled. The certificate is valid until 2018-03-11 Certificate Registration No. TUV116 07 2153

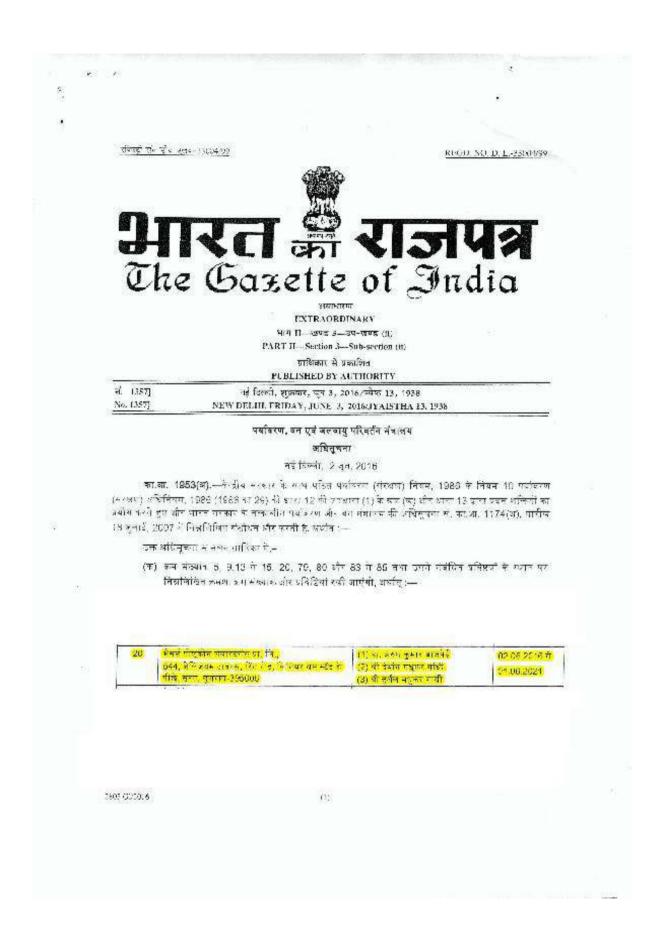
2015-01-26

SHA-Gartification Body

TOV BOD Group


Acres union to the John Acres don on System of the control and the Acres do Union.

Tibly S(ID Kensyllde ♦ 125, "Klass" steg. 486. Yolde-Dong Young (Ningto-Sy ♦ 150-715, Sent ♦ Krise


TUV"

E. GUJARAT POLLUTION CONTROL BOARD ENVIRONMENTAL AUDIT RECOGNITION

